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1Department of Economics, University of Pennsylvania
2Institute for Quantitative Theory and Methods, Emory University

3NBER

This Version: July 30, 2018, First Version: October 31, 2015

Abstract

This paper studies identification and inference for the effect of a mis-classified,
binary, endogenous regressor when a discrete-valued instrumental variable is available.
We begin by showing that the only existing point identification result for this model
is incorrect. We go on to derive the sharp identified set under mean independence
assumptions for the instrument and measurement error. The resulting bounds are
novel and informative, but fail to point identify the effect of interest. This motivates
us to consider alternative and slightly stronger assumptions: we show that adding
second and third moment independence assumptions suffices to identify the model.

Keywords: Instrumental variables, Measurement error, Endogeneity

JEL Codes: C10, C25, C26

∗We thank Daron Acemoglu, Manuel Arellano, Kristy Buzard, Xu Cheng, Bernardo da Silveira, Bo
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1 Introduction

Measurement error and endogeneity are pervasive features of economic data. Conveniently,
a valid instrumental variable corrects for both problems when the measurement error is
classical, i.e. uncorrelated with the true value of the regressor. Many regressors of interest in
applied work, however, are binary and thus cannot be subject to classical measurement error.1

When faced with non-classical measurement error, the instrumental variables estimator can
be severely biased. In this paper, we study an additively separable model of the form

y = c(x) + β(x)T ∗ + ε (1)

where ε is a mean-zero error term, T ∗ is a binary, potentially endogenous regressor of interest,
and x is a vector of exogenous controls.2 We ask whether, and if so under what conditions, a
discrete instrumental variable z suffices to non-parametrically identify the causal effect β(x)
of T ∗, when we observe not T ∗ but a mis-classified binary surrogate T .

We proceed under the assumption of non-differential measurement error. This condition
has been widely used in the existing literature and imposes that T provides no additional
information beyond that contained in (T ∗,x). Even in this fairly standard setting, identifi-
cation remains an open question: we begin by showing that the only existing identification
result for this model is incorrect. We then go on to derive the sharp identified set under the
standard first-moment assumptions from the related literature. We show that regardless of
the number of values that z takes on, the model is not point identified. This motivates us to
consider alternative, and slightly stronger assumptions. We show that, given a binary instru-
ment, the addition of a second moment independence assumption suffices to identify a model
with one-sided mis-classification. Adding a second moment restriction on the measurement
error along with a third moment independence assumption for the instrument suffices to
identify the model in general. This result likewise requires only a binary z.

Our work relates to a large literature that considers departures from classical measure-
ment error, by allowing the measurement error to be related to the true value of the un-
observed regressor. Chen et al. (2005) obtain identification in a general class of moment
condition models with mis-measured data by relying on the existence of an auxiliary dataset
from which they can estimate the measurement error process. In contrast, Hu and Shennach
(2008) and Song (2015) rely on an instrumental variable and an additional conditional loca-
tion assumption on the measurement error distribution. More recently, Hu et al. (2015) use
a continuous instrument to identify the ratio of partial effects of two continuous regressors,
one measured with error, in a linear single index model. Unfortunately, these approaches
cannot be applied to the case of a mis-measured binary regressor.

A number of papers have studied models with an exogenous binary regressor subject to
non-differential measurement error. One group of papers asks what can be learned without
recourse to an instrumental variable. An early contribution by Aigner (1973) characterizes
the asymptotic bias of OLS in this setting, and proposes a correction using outside infor-

1The only way to mis-classify a true one is downwards, as a zero, while the only way to mis-classify a
true zero is upwards, as a one. This creates negative dependence between the truth and measurement error.

2Because T ∗ is binary, there is no loss of generality from writing the model in this form rather than the
more familiar y = h(T ∗,x) + ε. Simply define β(x) = h(1,x)− h(0,x) and c(x) = h(0,x).

1



mation on the mis-classification process. Related work by Bollinger (1996) provides partial
identification bounds. More recently, Chen et al. (2008a) use higher moment assumptions
to obtain identification in a linear model, and Chen et al. (2008b) extend these results to
the non-parametric setting. van Hasselt and Bollinger (2012) and Bollinger and van Hasselt
(2015) provide additional partial identification results. For results on the partial identifica-
tion of discrete probability distributions under mis-classification, see Molinari (2008).

Continuing under the assumption of exogeneity and non-differential measurement error,
another group of papers relies on the availability of either an instrumental variable or a
second measure of T ∗. Black et al. (2000) and Kane et al. (1999) consider a linear model and
show that when two alternative measures T1 and T2 of T ∗ are available, a non-linear GMM
estimator can be used to recover the effect of interest. Subsequently, Frazis and Loewen-
stein (2003) note that an instrumental variable can take the place of one of the measures.
Mahajan (2006) extends the results of Black et al. (2000) and Kane et al. (1999) to a more
general setting using a binary instrument in place of one of the treatment measures, estab-
lishing non-parametric identification of the conditional mean function. When T ∗ is in fact
exogenous, this coincides with the causal effect. Hu (2008) derives related results when the
mis-classified discrete regressor may take on more than two values. Lewbel (2007a) provides
an identification result for the same model as Mahajan (2006) under different assumptions.
In particular, his “instrument-like variable” need not satisfy the usual exclusion restriction
so long as it does not interact with T ∗ and takes on three or more values.

Much less is known about the case in which a binary, or discrete, regressor is not only mis-
classified but endogenous. The first paper to provide a formal result for this case is Mahajan
(2006). He extends his main result to the case of an endogenous treatment, providing an
explicit proof of identification under the usual IV assumption in a model with additively
separable errors. As we show below, however, this result is false.3 Several more recent
papers also consider the case of a mis-classified, endogenous, binary regressor. Kreider et al.
(2012), partially identify the effects of food stamps on health outcomes of children under
weak measurement error assumptions by relying on auxiliary data. Similarly, Battistin et al.
(2014) study the returns to schooling in a setting with multiple mis-reported measures of
educational qualifications. Unlike these two papers, our approach does not depend on the
availability of auxiliary data. In a different vein, Shiu (2016) uses an exclusion restriction
for the participation equation and an additional valid instrument to identify the effect of a
discrete, mis-classified endogenous regressor in a semi-parametric selection model. Similarly,
Nguimkeu et al. (2016) use exclusion restrictions for both the participation equation and
measurement error equation to identify a parametric model with endogenous participation
and one-sided endogenous mis-reporting. Unlike those of the preceding two papers, our
results rely neither on parametric assumptions nor additional exclusion restrictions. Other
than Mahajan (2006), the paper most closely related to our own is that of Ura (Forthcoming),
who derives partial identification results for a local average treatment effect without the
non-differential assumption. In contrast, we study an additively separable model under
non-differential measurement error and derive both partial and point identification results.

The remainder of the paper is organized as follows. Section 2.1 describes our model and
assumptions, Section 2.2 relates our results to existing work, and Sections 2.3–2.4 present

3Appendix B provides a detailed explanation of the error in Mahajan’s proof.
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our identification results. Section 3 provides a brief discussion of how to carry out inference
using our identification results, and Section 4 concludes. Proofs appear in Appendix A, and
we give a detailed explanation of the error in Mahajan (2006) in Appendix B. Appendix C
explains how our partial identification bounds from Section 2.3 can be interpreted in a local
average treatment effects (LATE) setting.

2 Identification

2.1 Baseline Assumptions

As defined in the preceding section, our model is y = c(x) + β(x)T ∗ + ε, where ε is a mean-
zero error term, and the parameter of interest is β(x) – the effect of an unobserved, binary,
endogenous regressor T ∗. Suppose we observe a valid and relevant binary instrument z. In
the discussion following Corollary 2.2 below, we explain how these results generalize to the
case of an arbitrary discrete-valued instrument. We assume that the model and instrument
satisfy the following conditions:

Assumption 2.1.

(i) y = c(x) + β(x)T ∗ + ε where T ∗ ∈ {0, 1} and E[ε] = 0;

(ii) z ∈ {0, 1}, where 0 < P(z = 1|x) < 1, and P(T ∗ = 1|x, z = 1) 6= P(T ∗ = 1|x, z = 0);

(iii) E[ε|x, z] = 0.

Assumption 2.1(i) is a restatement of the additively separable model from Equation 1,
which includes as a special case the linear model y = c + βT ∗ + x′γ + ε that is pervasive
in empirical economics. Assumptions 2.1(ii) and (iii) are the textbook instrumental variable
relevance and validity conditions, respectively. Under Assumption 2.1, the Wald estimator

[E (y|z = 1,x)− E (y|z = 0,x)] / [E (T ∗|z = 1,x)− E (T ∗|z = 0,x)]

identifies β(x). Unfortunately this estimator is infeasible, as we observe not T ∗ but a mis-
classified binary surrogate T .4 To make further progress, we must impose conditions on the
process that generates T . Accordingly, define the following mis-classification probabilities:

α0(x, z) = P (T = 1|T ∗ = 0,x, z) α0(x) = P (T = 1|T ∗ = 0,x)

α1(x, z) = P (T = 0|T ∗ = 1,x, z) α1(x) = P (T = 0|T ∗ = 1,x) .

Assumption 2.2.

(i) α0(x, z) = α0(x), α1(x, z) = α1(x)

(ii) α0(x) + α1(x) < 1

(iii) E[ε|x, z, T ∗, T ] = E[ε|x, z, T ∗]

4Although it involves T ∗, Assumption 2.1(ii) is testable: see the discussion following Lemma 2.1.
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Assumption 2.2, or a variant thereof, is standard in the theoretical literature on mis-
classification (Black et al., 2000; Frazis and Loewenstein, 2003; Hu, 2008; Lewbel, 2007a;
Mahajan, 2006) and in empirical studies that allow for measurement error in a binary or
discrete variable (Battistin et al., 2014; Feng and Hu, 2013; Kane et al., 1999). Assumption
2.2 (i) states that the mis-classification probabilities do not depend on z. Assumption 2.2
(ii) restricts the extent of mis-classification and is equivalent to requiring that T and T ∗ be
positively correlated. Assumption 2.2 (iii) is often referred to as “non-differential measure-
ment error.” Intuitively, it maintains that T provides no additional information about ε, and
hence y, given knowledge of (T ∗, z,x). While Assumption 2.2(ii) is quite mild, Assumptions
2.2 (i) and (iii) are more restrictive, as discussed by Bound et al. (2001). To take a specific
example, suppose that y is log wage and T ∗ is an indicator for college completion. If T is a
potentially erroneous measure of college completion taken from a university’s administrative
records, then the assumption of non-differential measurement error is quite plausible. If, on
the other hand, T is a self-report of college completion and there are “returns to lying” about
college completion, i.e. employers only imperfectly observe worker ability, this assumption
is less plausible.5 Note, however, that our assumptions on the mis-classification process are
conditional on x: we place no restrictions on the relationship between observed covariates
and the mis-classification errors. In contrast, Bound et al. (2001) considers unconditional
versions of our Assumption 2.2. Instrument validity – Assumption 2.1 (iii) – is more plau-
sible after conditioning on a rich set of exogenous controls, and the same is true of our
mis-classification assumptions. For more discussion of settings in which the assumption of
non-differential measurement error is warranted, see Carroll et al. (2006).

2.2 Point Identification Results from the Literature

Existing results from the literature – see for example Frazis and Loewenstein (2003) and Ma-
hajan (2006) – establish that β(x) is point identified if Assumptions 2.1–2.2 are augmented
to include the following condition:

Assumption 2.3 (Joint Exogeneity). E[ε|x, z, T ∗] = 0.

Assumption 2.3 strengthens the mean independence condition from Assumption 2.1 (iii)
to hold jointly for T ∗ and z. By iterated expectations, this implies that T ∗ is exogenous,
i.e. E[ε|x, T ∗] = 0. If T ∗ is endogenous, Assumption 2.3 clearly fails. Mahajan (2006)
argues, however, that the following restriction, along with our Assumptions 2.1–2.2, suffices
to identify β(x) when T ∗ may be endogenous:

Assumption 2.4 (Mahajan (2006) Equation 11). E[ε|x, z, T ∗, T ] = E[ε|x, T ∗].

Assumption 2.4 does not require E[ε|x, T ∗] to be zero, but maintains that it does not
vary with z. We show in Appendix B, however, that under Assumptions 2.1–2.2, Assumption
2.4 can only hold if T ∗ is exogenous. If z is a valid instrument and T ∗ is endogenous, then
Assumption 2.4 implies that there is no first-stage relationship between z and T ∗. As such,
identification in the case where T ∗ is endogenous is an open question.

5See Hu and Lewbel (2012) for a proposal to estimate the “returns to lying” in this context.
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2.3 Partial Identification

In this section we derive the sharp identified set under Assumptions 2.1–2.2 and show that
β(x) is not point identified. For a discussion of how our partial identification results can be
interpreted in a local average treatment effects (LATE) setting, see Appendix C.

To simplify the notation, define the following shorthand for the unobserved and observed
first stage probabilities

p∗k(x) = P(T ∗ = 1|x, z = k), pk(x) = P(T = 1|x, z = k). (2)

We first state two lemmas that that will be used repeatedly below.

Lemma 2.1. Under Assumption 2.2 (i),

[1− α0(x)− α1(x)] p
∗
k(x) = pk(x)− α0(x)

[1− α0(x)− α1(x)] [1− p∗k(x)] = 1− pk(x)− α1(x)

where the first-stage probabilities p∗k(x) and pk(x) are as defined in Equation 2.

Lemma 2.2. Under Assumptions 2.1 and 2.2 (i)–(ii),

β(x)Cov(z, T |x) = [1− α0(x)− α1(x)]Cov(y, z|x)

Lemma 2.1 relates the observed first-stage probabilities pk(x) to their unobserved counter-
parts p∗k(x) in terms of the mis-classification probabilities α0(x) and α1(x). By Assumption
2.2 (ii), 1 − α0(x) − α1(x) > 0 so that Lemma 2.1 bounds α0(x) and α1(x) in terms of the
observed first-stage probabilities. Moreover, by taking differences evaluated at k = 1 and
k = 0, this Lemma shows that p∗0(x) = p∗1(x) if and only if p0(x) = p1(x). In other words,
Assumption 2.1 (ii) is testable under Assumption 2.2 (ii). Lemma 2.2 relates the instrumen-
tal variables (IV) estimand, Cov(y, z|x)/Cov(z, T |x), to the mis-classification probabilities.
Since 1 − α0(x) − α1(x) > 0, IV is biased upwards in the presence of mis-classification.
Together these lemmas bound the causal effect of interest: β(x) lies between the reduced
form and IV estimators. Without Assumption 2.2 (iii), non-differential measurement error,
these bounds are sharp.

Theorem 2.1. Under Assumptions 2.1 and 2.2 (i)–(ii), α0(x) ≤ pk(x) ≤ 1 − α1(x) for
k = 0, 1 and

E[y|x, z = k] = c(x) + β(x)

[
pk(x)− α0(x)

1− α0(x)− α1(x)

]
. (3)

Provided that p0(x) 6= p1(x), these expressions characterize the sharp identified set for c(x),
β(x), α0(x), and α1(x).

Corollary 2.1. Under the conditions of Theorem 2.1, the sharp identified set for β(x) is the
closed interval between the reduced form estimand Cov(y, z|x)/Var(z|x) and the IV estimand
Cov(y, z|x)/Cov(z, T |x).

Corollary 2.1 follows by taking differences of the expression for E[y|x, z = k] across
k = 1 and k = 0, and substituting the maximum and minimum value for α0(x) + α1(x)
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consistent with the observed first-stage probabilities.6 Note that the only role of the condition
p0(x) 6= p1(x) in the preceding two results is to ensure that it is possible to satisfy Assumption
2.1 (ii). Frazis and Loewenstein (2003) point out that the IV estimand provides an upper
bound for β(x), and Lemmas 2.1–2.2 are well-known in the literature (see e.g. Frazis and
Loewenstein, 2003; Mahajan, 2006). Nevertheless, we are unaware of any published result
that explicitly states both bounds from Corollary 2.1 or proves that they are sharp under
Assumptions 2.1 and 2.2 (i)–(ii).

Neither Theorem 2.1 nor Corollary 2.1 imposes Assumption 2.2 (iii) – non-differential
measurement error. While this assumption plays an important role in existing identification
results for an exogenous T ∗ (see Section 2.2), its identifying power under endogeneity has not
been addressed in the literature.7 We now show that this assumption in general yields further
restrictions on probabilities α0(x) and α1(x), but fails to point identify β(x). To simplify
the proof of sharpness, we assume that y is continuously distributed, which is natural in an
additively separable model. Without this assumption, the bounds that we derive are still
valid, but may not be sharp. Nevertheless, the reasoning from our proof can be generalized
to cases in which y does not have a continuous support set.

Theorem 2.2. Suppose that the conditional distribution of y given (x, T, z) is continuous.
Further suppose that the conditions of Theorem 2.1 and Assumption 2.2 (iii) hold. For
any k such that E [y|x, T = 0, z = k] 6= E [y|x, T = 1, z = k], let Ak denote the set of pairs(
α0(x), α1(x)

)
such that α0(x) < pk(x) < 1− α1(x) and

µ
tk

(
q
tk

(
α0(x), α1(x),x

)
, x

)
≤ µk

(
α0(x),x

)
≤ µtk

(
qtk

(
α0(x), α1(x),x

)
, x

)
for all t = 0, 1 where

µ
tk

(
q,x

)
= E [y | y ≤ q,x, T = t, z = k] , µtk

(
q,x

)
= E [y | y > q,x, T = t, z = k]

µk

(
α0(x),x

)
=

pk(x)E[y|x, z = k, T = 1]− α0(x)E[y|x, z = k]

pk(x)− α0(x)

and we define

q
tk

(
α0(x), α1(x),x

)
= F−1

tk

(
rtk

(
α0(x), α1(x),x

) ∣∣∣∣x)
qtk

(
α0(x), α1(x),x

)
= F−1

tk

(
1− rtk

(
α0(x), α1(x),x

) ∣∣∣∣x)
6If a priori restrictions on α0 and α1 are available, e.g. α0 = 0, α1 = 0, or α0 = α1, these bounds can be

improved. For more discussion, see Corollary 2.2 of DiTraglia and Garćıa-Jimeno (2017).
7The only exception is the incorrect result of Mahajan (2006) described in Section 2.2 and Appendix B.
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where F−1
tk (·|x) is the conditional quantile function of y given (x, T = t, z = k),

r0k
(
α0(x), α1(x),x

)
=

α1(x)

1− pk(x)

[
pk(x)− α0(x)

1− α0(x)− α1(x)

]
r1k

(
α0(x), α1(x),x

)
=

1− α1(x)

pk(x)

[
pk(x)− α0(x)

1− α0(x)− α1(x)

]
and pk(x) is defined in Equation 2. The sharp identified set for c(x), β(x), α0(x) and α1(x)
is characterized by Equation 3 and

(
α0(x), α1(x)

)
∈ A∗ where

(i) A∗ ≡ A0 ∩ A1 if E[y|x, T = 0, z = k] 6= E[y|x, T = 1, z = k] for all k = 0, 1;

(ii) A∗ ≡ Ak if E[y|x, T = 0, z = k] 6= E[y|x, T = 1, z = k] and E[y|x, T = 0, z = `] =
E[y|x, T = 1, z = `];

(iii) A∗ ≡
{(

α0(x), α1(x)
)
: α0(x) ≤ pk(x) ≤ 1− α1(x) for all k

}
if E[y|x, T = 0, z = k] =

E[y|x, T = 1, z = k] for all k = 0, 1.

Imposing Assumption 2.2 (iii) strictly improves upon the identified set from Theorem
2.1 unless E[y|x, T = 0, z = k] = E[y|x, T = 1, z = k] for all k. Even if β(x) = 0, the
difference of these observable means is generically nonzero.8 The intuition for Theorem
2.2 is as follows. For simplicity, suppress dependence on x. Now, fix (T = t, z = k) and
(α0, α1). The observed distribution of y given (T = t, z = k), call it Ftk, is a mixture of
two unobserved distributions: the distribution of y given (T = k, z = k, T ∗ = 1), call it F 1

tk,
and the distribution of y given (T = t, z = k, T ∗ = 0), call it F 0

tk. The mixing probabilities
are rtk and 1− rtk from the statement of Theorem 2.2 and are fully determined by (α0, α1)
and pk. Assumptions 2.1 (i) and 2.2 (ii) imply that the unobserved means E[y|T ∗, T, z] are
fully determined by (α0, α1) given the observed means E[y|T, z]. The question is whether it
is possible, given the observed distribution Ftk, to construct F 1

tk and F 0
tk with the required

values for E[y|T ∗, T, z] such that Ftk = rtkF
1
tk + (1 − rtk)F

0
tk for all combinations (t, k). If

not, then (α0, α1) does not belong to the identified set. Our proof provides necessary and
sufficient conditions for such a mixture to exist at a given point (α0, α1). We can then
appeal to the reasoning from Theorem 2.1 to complete the argument. By ruling out values
for α0 and α1, Theorem 2.2 restricts β via Lemma 2.2. While these restrictions can be very
informative, they do not yield point identification.

Corollary 2.2. Under Assumptions 2.1 and 2.2 the identified set for β(x) contains both the
IV estimand Cov(y, z|x)/Cov(z, T |x) and the true coefficient β(x).

Corollary 2.2 follows by Lemma 2.2 because α0(x) = α1(x) = 0 always belongs to the
sharp identified set from Theorem 2.2. Non-differential measurement error cannot exclude
the possibility that there is no mis-classification because in this case it is trivial to construct
the required mixtures. Although we focus throughout this paper on the case of a binary
instrument, one might wonder whether point identification can be achieved by increasing

8Suppress dependence on x for simplicity. There are only two settings in which E[y|T = 0, z = k] =
E[y|T = 1, z = k]. The first is if the true value of either α0 or α1 lies at the upper boundary of the identified
set from Theorem 2.1. The second is if β = E[ε|T ∗ = 0, z = k]− E[ε|T ∗ = 0, z = k].
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the support of z, perhaps along the lines of Lewbel (2007a). The answer turns out to be no.
Suppose that we were to modify Assumptions 2.1 and 2.2 to hold for all values of z in some
discrete support set. By Lemma 2.2, a binary instrument identifies β(x) up to knowledge
of the mis-classification probabilities α0(x) and α1(x). It follows that any pair of values
(k, `) in the support set of z identifies the same object. Accordingly, to identify β(x) it is
necessary and sufficient to identify the mis-classification probabilities. A binary instrument
fails to identify these probabilities because we can never exclude the possibility of zero mis-
classification. The same is true of a discrete K-valued instrument. Increasing the support of
z does, however, shrink the identified set by increasing the number of restrictions available:
in this case Theorems 2.1–2.2 continue to apply replacing “k = 0, 1” with “for all k.”

2.4 Point Identification

The results of the preceding section establish that β(x) is not point identified under As-
sumptions 2.1 and 2.2. In light of this, there are two possible ways to proceed: either one
can report partial identification bounds based on our characterization of the sharp identified
set from Theorem 2.2, or one can attempt to impose stronger assumptions to obtain point
identification. In this section we consider the second possibility. We begin by defining the
following functions of the model parameters:

θ1(x) = β(x) [1− α0(x)− α1(x)]
−1 (4)

θ2(x) = [θ1(x)]
2 [1 + α0(x)− α1(x)] (5)

θ3(x) = [θ1(x)]
3 [{1− α0(x)− α1(x)}2 + 6α0(x) {1− α1(x)}

]
(6)

Now consider the following additional assumption:

Assumption 2.5. E[ε2|x, z] = E[ε2|x]

Assumption 2.5 is a second moment version of the standard mean exclusion restriction for
the instrument z – Assumption 2.1 (iii). It requires that the conditional variance of the error
term given the covariates x does not depend on z, but does not require homoskedasticity
with respect to x, T ∗ or T . Assumption 2.5 allows us to derive the following lemma:

Lemma 2.3. Under Assumptions 2.1, 2.2 and 2.5,

Cov(y2, z|x) = 2Cov(yT, z|x)θ1(x)− Cov(T, z|x)θ2(x)

where θ1(x) and θ2(x) are defined in Equations 4–5.

Lemma 2.2 identifies θ1(x). Since Cov(z, T |x) 6= 0 by Assumption 2.1 (ii), we can solve
for θ2(x) in terms of observables only, using Lemma 2.3. Given knowledge of θ1(x), we can
solve Equation 5 for the difference of mis-classification rates so long as β(x) 6= 0.

Corollary 2.3. Under Assumptions 2.1–2.2 and 2.5, α1(x)− α0(x) is identified so long as
β(x) 6= 0.
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Corollary 2.3 identifies the difference of mis-classification error rates. Hence, under one-
sided mis-classification, α0(x) = 0 or α1(x) = 0, augmenting our baseline Assumptions
2.1–2.2 with Assumption 2.5 suffices to identify β(x). Notice that β(x) = 0 if and only if
θ1(x) = 0. Thus, β(x) is still identified in the case where Corollary 2.3 fails to apply.

Assumption 2.5 does not suffice to identify β(x) without a priori restrictions on the
mis-classification error rates. To achieve identification in the general case, we impose the
following additional conditions:

Assumption 2.6.

(i) E[ε2|x, z, T ∗, T ] = E[ε2|x, z, T ∗]

(ii) E[ε3|x, z] = E[ε3|x]

Assumption 2.6 (i) is a second moment version of the non-differential measurement error
assumption, Assumption 2.2 (iii). It requires that, given knowledge of (x, T ∗, z), T provides
no additional information about the variance of the error term. Note that Assumption 2.6 (i)
does not require homoskedasticity of ε with respect to x or T ∗. Assumption 2.6 (ii) is a third
moment version of Assumption 2.5. It requires that the conditional third moment of the error
term given x does not depend on z. This condition neither requires nor excludes skewness
in the error term conditional on covariates: it merely states that the skewness is unaffected
by the instrument. While Assumptions 2.5 and 2.6 may appear somewhat unusual, they are
implied by the more intuitive independence conditions ε |= z|x and ε |= T |(x, T ∗, z). Although
E[ε|x, z] = 0 and E[ε|x, z, T ∗, T ] = E[ε|x, z, T ∗] are technically weaker than assuming full
independence, we would be somewhat dubious of any supposed “natural experiment” that
purportedly satisfied mean exclusion but not independence. Indeed, as discussed by Imbens
and Rubin (1997), an instrument satisfying mean exclusion but not independence could
become invalid if the outcome variable were transformed, for example by taking logs. As it
is not uncommon for applied papers to report results in both logs and levels (e.g. Angrist,
1990), our view is that researchers implicitly assume more than mean exclusion in typical
applications of instrumental variables. Analogous reasoning applies to the non-differential
measurement error assumption.

Assumption 2.6 allows us to derive the following Lemma which, combined with Lemma
2.3, leads to point identification:

Lemma 2.4. Under Assumptions 2.1–2.2 and 2.5–2.6,

Cov(y3, z|x) = 3Cov(y2T, z|x)θ1(x)− 3Cov(yT, z|x)θ2(x) + Cov(T, z|x)θ3(x)

where θ1(x), θ2(x) and θ3(x) are defined in Equations 4–5.

Theorem 2.3. Under Assumptions 2.1–2.2 and 2.5–2.6, β(x) is identified. If β(x) 6= 0,
then α0(x) and α1(x) are likewise identified.

Lemmas 2.2–2.4 yield a linear system of three equations in θ1(x), θ2(x) and θ3(x). Under
Assumption 2.1 (ii), the system has a unique solution so θ1(x), θ2(x) and θ3(x) are identified.
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The proof of Theorem 2.3 shows that, so long as β(x) 6= 0, Equations 4–6 can be solved for
β(x), α0(x) and α1(x). In particular, using steps from the proof of Theorem 2.3

β(x) = sign
[
θ1(x)

]√
3
[
θ2(x)/θ1(x)

]2 − 2
[
θ3(x)/θ1(x)

]
.

If we relax Assumption 2.2 (ii) and assume α0(x) + α1(x) 6= 1 only, β(x) is only identified
up to sign: in this case the sign of θ1(x) need not equal that of β(x).

3 Estimation and Inference

We now briefly outline how the identification results from Section 2 can be used to esti-
mate and carry out statistical inference for the parameters of interest:

(
α0(x), α1(x), β(x)

)
.

Lemmas 2.2–2.4 yield a system of linear moment equations in the reduced form parameters
θ′(x) =

(
θ1(x), θ2(x), θ3(x)

)
. Defining a vector of intercepts κ′(x) =

(
κ1(x), κ2(x), κ3(x)

)
,

and a vector of observables w′ = (T, y, yT, y2, y2T, y3), we can write this system as

E

[{
Ψ
(
θ(x)

)
wi − κ(x)

}
⊗
(

1
z

) ∣∣∣∣∣x = x

]
= 0 (7)

Ψ
(
θ(x)

)
≡

 −θ1(x) 1 0 0 0 0
θ2(x) 0 −2θ1(x) 1 0 0

−θ3(x) 0 3θ2(x) 0 −3θ1(x) 1

 . (8)

Using Equations 4–6, we can re-write Ψ as a function of
(
α0(x), α1(x), β(x)

)
, leaving us with

a just-identified, non-parametric conditional moment problem. Because the conditioning
variables in Equation 7 are the same as the arguments of the unknown functions (α0, α1, β),
this problem fits within the framework of Lewbel (2007b), permitting straightforward es-
timation and inference via a local GMM procedure. If β(x) is close to zero, however, this
procedure can perform poorly; in this case the moment conditions from Equations 7, are only
weakly informative about α0(x) and α1(x). An earlier version of this paper (DiTraglia and
Garćıa-Jimeno, 2017) discusses this problem in more detail and provides a solution based
on generalized moment selection (Andrews and Soares, 2010) that combines the moment
inequalities implied by our partial identification results from Section 2.3 with the moment
equalities from Equation 7.

4 Conclusion

This paper has studied identification and inference for a mis-classified, binary, endogenous
regressor in an additively separable model using a discrete instrumental variable. We have
shown that the only existing identification result for this model is incorrect, and gone on to
derive the sharp identified set under standard first-moment assumptions from the literature.
Strengthening these assumptions to hold for second and third moments, we have established
point identification for the effect of interest. An interesting extension of the results presented
above would be to consider the case of discrete regressors that take on more than two values.
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A Proofs

All of the results in this paper hold x fixed. This allows us to completely ignore the presence of
covariates in the proofs that follow. Accordingly we work in terms of scalars α0, α1, β, pk, etc.
rather than functions α(x), α1(x), β(x), pk(x). The former should be understood as the value of
the latter evaluated at some particular x.

A.1 Partial Identification Results

Proof of Lemma 2.1. Follows from a simple calculation using the law of total probability.

Proof of Lemma 2.2. Immediate since Cov(z, T ) = (1− α0 − α1)Cov(z, T
∗) by Lemma 2.1.

Proof of Theorem 2.1. To show that α0 ≤ pk ≤ 1 − α1, substitute p∗k = 0 and p∗k = 1, respec-
tively, into Lemma 2.1 and rearrange. To show that E[y|z = k] = c + β(pk − α0)/(1 − α0 − α1),
take conditional expectations of Equation 1 and apply Assumption 2.1 (iii) and Lemma 2.1.

To prove sharpness we need to show that for any (c, β, α0, α1) that satisfy α0 ≤ pk ≤ 1 − α1

and E[y|z = k] = c + β(pk − α0)/(1 − α0 − α1) we can construct a valid joint distribution for
(y, T, T ∗, z) that is compatible with the observed distribution of (y, T, z), provided that p1 6= p0.
To establish this result, we factorize the joint distribution of (y, T, T ∗, z) into the product of a
conditional y|(T, T ∗, z) and marginal (T, T ∗, z). The argument proceeds in two steps. Our first
step relies on the fact that Assumptions 2.1 (i) and (iii) do not constrain the distribution of
(T, T ∗, z) while 2.1 (ii) and 2.2 (i)–(ii) constrain only the distribution of (T, T ∗, z). Under these
latter three assumptions, we show how to construct a valid joint distribution for (T, T ∗, z) that is
compatible with the observed distribution of (T, z) for any (α0, α1) satisfying α0 ≤ pk ≤ 1 − α1.
Our second step shows how to construct a valid conditional distribution for y given (T, T ∗, z) under
Assumptions 2.1 (i) and (iii) that is compatible with the observed conditional distribution of y
given (T, z) for any (c, β, α0, α1) satisfying E[y|z = k] = c + β(pk − α0)(1 − α0 − α1). Combining
the two steps gives the required joint distribution for (y, T ∗, T, z).

For the first step, we need to construct a valid joint probability mass function p(T ∗, T, z) with
support set {0, 1} × {0, 1} × {0, 1}. By Assumption 2.2 (i), p(T |T ∗, z) = p(T |T ∗) and hence

p(T ∗, T, z) = p(T |T ∗)p(T ∗|z)p(z).

Since p(z) is observed, to construct a valid joint probability mass function p(T ∗, T, z) it suffices to
construct valid conditional probability mass functions p(T |T ∗) and p(T ∗|z). Since α0 ≤ pk ≤ 1−α1,
both α0 and α1 are guaranteed to lie between zero and one. This gives a valid construction of
p(T |T ∗). Moreover the corresponding values of p∗k implied by Lemma 2.1 are also guaranteed to lie
between zero and one. This gives a valid construction of p(T ∗|z) that satisfies Assumption 2.1 (ii),
since p1 6= p0 by assumption and (p1 − p0) = (p∗1 − p∗0)(1 − α0 − α1) by Lemma 2.1. Because our
construction relies on Lemma 2.1, which is simply an application of the law of total probability,
the resulting distribution p(T, T ∗, z) is automatically compatible with p(T, z) = p(T |z)p(z).

For the second step, we need to construct a valid conditional distribution for y given (T, T ∗, z).
To begin we define the following notation:

rtk ≡ P(T ∗ = 1|T = t, z = k) Ft(τ) ≡ P(y ≤ τ |z = k)

Ftk(τ) ≡ P(y ≤ τ |T = t, z = k) F t∗
tk (τ) ≡ P(y ≤ τ |T ∗ = t∗, T = t, z = k)

Gk(τ) ≡ P(ε ≤ τ |z = k) Gt∗
tk(τ) ≡ P(ε ≤ τ |T ∗ = t∗, T = t, z = k).
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Assumption 2.1 (i) imposes a relationship between Gt∗
tk and F t∗

tk for each t∗, namely

G0
tk(τ) = F 0

tk(τ + c), G1
tk(τ) = F 1

tk(τ + c+ β) (A.1)

and thus we see that

Gk(τ) = r1kpkF
1
1k(τ + c+ β) + r0k(1− pk)F

1
0k(τ + c+ β)

+ (1− r1k)pkF
0
1k(τ + c) + (1− r0k)(1− pk)F

0
0k(τ + c) (A.2)

applying the law of total probability and Bayes’ rule. Moreover,

Ftk(τ) = rtkF
1
tk(τ) + (1− rtk)F

0
tk(τ) (A.3)

for all t, k ∈ {0, 1}, and by Bayes’ rule,

r1k = (1− α1)p
∗
k/pk, r0k = α1p

∗
k/(1− pk). (A.4)

There are four cases, corresponding to different possibilities for the rtk. The first case violates one
of our model assumptions. For each of the remaining cases, we show that it is possible to construct
the required distributions F 0

tk, F
1
tk under Assumptions 2.1 (i) and (iii) for any (c, β, α0, α1) such

that E(y|z = k) = c+ β(pk − α0)/(1− α0 − α1).

Case I: r1k = 0, r0k 6= 0 By Equation A.4 this requires α1 = 1, violating Assumption 2.2 (ii).

Case II: r0k = r1k = 0 By Equation A.4, this requires p∗k = 0 which in turn requires pk = α0.
By Equation A.3 we have F 0

tk = Ftk, while F 1
tk is unrestricted. Substituting into A.2,

Gk(τ) = pkF1k(τ + c) + (1− pk)F0k(τ + c) = Fk(τ + c)

Now, since Fk(τ + c) is the conditional CDF of y − c given that z = k, and Gk is the conditional
CDF of ε given z = k, we see that Assumption 2.1 (i) is satisfied if and only if E(y|z = k) = c,
which is equal to c+ β(pk − α0)/(1− α0 − α1) since pk − α0 = 0.

Case III: r1k 6= 0, r0k = 0 By Equation A.4 this requires α1 = 0 and p∗k 6= 0. By Equation A.3
we have F 0

0k = F0k and since r1k 6= 1, we can solve to obtain

F 1
1k(τ) =

1

r1k

[
F1k(τ)− (1− r1k)F

0
1k(τ)

]
Substituting into Equation A.2, we obtain

Gk(τ) = [(1− pk)F0k(τ + c) + pkF1k(τ + c+ β)]

+ pk(1− r1k)
[
F 0
1k(τ + c)− F 0

1k(τ + c+ β)
]

Now, F0k(τ + c) is the conditional CDF of (y − c) given (T = 0, z = k) while F1k(τ + c + β) is
the conditional CDF of (y − c − β) given (T = 1, z = k). Similarly, F 0

1k(τ + c) is the conditional
CDF of ε given (T ∗ = 0, T = 1, z = k) while F 0

1k(τ + c + β) is the conditional CDF of (ε − β)
given (T ∗ = 0, T = 1, z = k). Since Gk(τ) is the conditional CDF of ε given z = k, we see that
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Assumption 2.1 (iii) is satisfied if and only if

0 = (1− pk)E(y − c|T = 0, z = k) + pkE(y − c− β|T = 1, z = k)

+ pk(1− r1k) [E(ε|T ∗ = 0, T = 1, z = k)− E(ε− β|T ∗ = 0, T = 1, z = k)]

Rearranging, this is equivalent to

E(y|z = k) = c+ (1− α1)β

(
pk − α0

1− α0 − α1

)
= c+ β

(
pk − α0

1− α0 − α1

)
since α1 = 0 in this case. As explained above, F 0

0k = F0k in the present case while F 1
0k is undefined.

We are free to choose any distributions for F 0
1k and F 1

1k that satisfy Equation A.3, for example
F 0
1k = F 1

1k = F1k.

Case IV: r1k 6= 0, r0k 6= 0 In this case, we can solve Equation A.3 to obtain

F 1
tk(τ) =

1

rtk

[
Ftk(τ)− (1− rtk)F

0
tk(τ)

]
Substituting this into Equation A.2, we have

Gk(τ) = Fk(τ + c+ β) + pk(1− r1k)
[
F 0
1k(τ + c)− F 0

1k(τ + c+ β)
]

+ (1− pk)(1− r0k)
[
F 0
0k(τ + c)− F 0

0k(τ + c+ β)
]

using the fact that Fk(τ) = pkF1k(τ) + (1− pk)F0k(τ). Now, Fk(τ + c+ β) is the conditional CDF
of (y − c − β) given z = k, while F 0

tk(τ + c) is the conditional CDF of ε given (T = t, z = k) and
F 0
tk(τ + c+β) is the conditional CDF of (ε−β) given (T = t, z = k). Since Gk(τ) is the conditional

CDF of ε given z = k, we see that Assumption 2.1 (iii) is satisfied if and only if

0 = E[y − c− β|z = k] + pk(1− r1k) [E(ε|T ∗ = 0, T = 1, z = k)− E(ε− β|T ∗ = 0, T = 1, z = k)]

+ (1− pk)(1− r0k) [E(ε|T ∗ = 0, T = 0, z = k)− E(ε− β|T ∗ = 0, T = 0, z = k)]

0 = E[y − c− β|z = k] + β [pk(1− r1k) + (1− pk)(1− r0k)]

But since [pk(1− r1k) + (1− pk)(1− r0k)] = (1−p∗k) and p∗k = (pk−α0)/(1−α0−α1), this becomes

E[y|z = k] = c+ β [(pk − α0)(1− α0 − α1)] .

Thus, in this case we are free to choose any distributions for F 0
tk and F 1

tk that satisfy Equation A.3.
For example we could take F 0

tk = F 1
tk = Ftk.

Proof of Corollary 2.1. The result follows by substituting the largest and smallest possible val-
ues for α0 + α1 and taking the difference of the expressions for E[y|z = k].

Proof of Theorem 2.2. The only difference between the conditions of Theorem 2.1 and those
of 2.2 is that the latter imposes Assumption 2.2 (iii) while the former does not. Accordingly, the
present argument builds on the proof of Theorem 2.1 and relies on the notation defined within it.
Under Assumption 2.1 (i), Assumption 2.2 (iii) is equivalent to E[y|T, T ∗, z] = E[y|T ∗, z]. Hence,
non-differential measurement error constrains only the conditional distribution of y given (T, T ∗, z).
For this reason, we need only revisit the second step of the proof of Theorem 2.1. Consider a point
(c, β, α0, α1) that satisfies Equation 3 and α0 ≤ pk ≤ 1 − α1 for all k. Since this point lies in the
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identified set from Theorem 2.1, it suffices to determine whether there exist valid conditional CDFs
F 0
tk, F

1
tk such that Ftk = (1− rtk)F

0
tk + rtkF

1
tk for all t, k and E[y|T, T ∗, z] = E[y|T ∗, z].

Let µt∗
tk ≡ E[y|T = t, z = k, T ∗ = t∗], µtk ≡ E[y|T = t, z = k], and µt∗

k ≡ E[y|z = k, T ∗ = t∗]. By
Assumption 2.2 (iii) µt∗

tk = µt∗
k for t∗ = 0, 1. Hence, by iterated expectations,

µ0k = (1− r0k)µ
0
k + r0kµ

1
k

µ1k = (1− r1k)µ
0
k + r1kµ

1
k.

Now, (µ0k, µ1k) are observed while r0k and r1k depend only on the observed first-stage probability
pk and the mis-classification probabilities (α0, α1). Thus, at a given point (c, β, α0, α1) in the
identified set from Theorem 2.1 the preceding equations form a linear system in µ0

k and µ1
k. After

some algebra, we find that the determinant is

r1k − r0k =

[
pk − α0

1− α0 − α1

] [
1− pk − α1

pk(1− pk)

]
.

Suppose first that r0k = r1k = r so the determinant condition fails. This occurs if and only
if α0 = pk or α1 = 1 − pk. If µ0k 6= µ1k, the system is inconsistent: no solution for (µ0

k, µ
1
k)

exists. Hence α0 = pk and α1 = 1 − pk are excluded from the identified set under non-differential
measurement error so long as µ0k 6= µ1k. If instead µ0k = µ1k = µ, the system is consistent but
rank deficient: any pair (µ0

k, µ
1
k) such that µ = (1− r)µ0

k + rµ1
k is a solution and hence satisfies the

assumption of non-differential measurement error. One such solution is µ1
k = µ0

k = µ so we are free
to set F 0

0k = F 1
0k = F0k and F 0

1k = F 1
1k = F1k. Hence, if µ0k = µ1k then α0 = pk lies within the

sharp identified set if pk < p` and α1 = 1− pk lies in the sharp identified set if p` < pk.
Now suppose that r0k 6= r1k, which occurs if and only if α0 6= pk and α1 6= 1− pk. In this case

the system has a unique solution, namely

µ0
k =

r1kµ0k − r0kµ1k

r1k − r0k
=

(1− pk)E(y|T = 0, z = k)− α1E(y|z = k)

1− pk − α1

µ1
k =

(µ1k − µ0k) + (r1kµ0k − r0kµ1k)

r1k − r0k
=

pkE(y|T = 1, z = k)− α0E(y|z = k)

pk − α0
.

Since µ0
k = µ0

0k = µ0
1k and µ1

k = µ1
0k = µ1

1k under non-differential measurement error, the mis-
classification probabilities (α0, α1) combined with the observable moments completely determine
the means of F 0

tk and F 1
tk whenever the determinant condition holds. If µ0k = µ1k then µ0

k = µ1
k

so we are free to set F 0
0k = F 1

0k = F0k and F 0
1k = F 1

1k = F1k. Combining this with the reasoning
from the preceding paragraph, we see that Assumption 2.2 (iii) imposes no additional restrictions
for any k such that µ0k = µ1k. Accordingly, for the remainder of the proof we consider only the
case in which µ0k 6= µ1k. Given (α0, α1), rtk, µ

0
k, and µ1

k are fixed. The question is whether, for a
given pair (α0, α1) and observed CDFs Ftk, we can construct valid CDFs F 0

tk, F
1
tk such that∫

R
τF 0

tk(dτ) = µ0
k,

∫
R
τF 1

tk(dτ) = µ1
k, Ftk(τ) = rtkF

1
tk(τ) + (1− rtk)F

0
tk(τ).

For a given pair (t, k), there are two cases: 0 < rtk < 1 and rtk ∈ {0, 1}.

Case I: rtk ∈ {0, 1} If rtk = 1 then µ1
k = µtk so we can set F 1

tk = Ftk. In this case F 0
tk is

unrestricted. Analogously, if rtk = 0, µ0
k = µtk so we can set F 0

tk = Ftk with F 1
tk unrestricted.
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Case II: 0 < rtk < 1 Define the function µtk(ξ) = E[y|y ∈ Itk(ξ), T = t, z = k] and the
closed interval Itk(ξ) =

[
F−1
tk (1− ξ − rtk), F

−1
tk (1− ξ)

]
where 0 ≤ ξ ≤ 1 − rtk. The function µtk is

decreasing in ξ, attaining its maximum µtk at ξ = 0 and its minimum µ
tk

at ξ = 1− rtk.

Suppose first that µ1
k does not lie in the interval [µ

tk
, µtk]. We show that it is impossible to

construct valid CDFs F 0
tk and F 1

tk that satisfy Ftk(τ) = rtkF
1
tk(τ) + (1− rtk)F

0
tk(τ). Since rtk 6= 1,

we can solve the expression for Ftk to yield F 0
tk(τ) =

[
Ftk(τ)− rtkF

1
tk(τ)

]
/(1 − rtk). Hence, since

rtk 6= 0, the requirement that 0 ≤ F 0
tk(τ) ≤ 1 implies

Ftk(τ)− (1− rtk)

rtk
≤ F 1

tk(τ) ≤
Ftk(τ)

rtk
(A.5)

Now define F 1
tk(τ) = min {1, Ftk(τ)/rtk} and F

1
tk(τ) = max {0, Ftk(τ)/rtk − (1− rtk)/rtk}. By

combining Equation A.5 with 0 ≤ F 1
tk(τ) ≤ 1, we obtain F

1
tk(τ) ≤ F 1

tk(τ) ≤ F 1
tk(τ). Thus, F

1
tk

first-order stochastically dominates F 1
tk which first-order stochastically dominates F 1

tk. Hence,∫
τF 1

tk(dτ) ≤
∫

τF 1
tk(dτ) ≤

∫
τF

1
tk(dτ).

But notice that

µ
tk

=

∫
τF 1

tk(dτ), µ1
k =

∫
τF 1

tk(dτ), µtk =

∫
τF

1
tk(dτ)

so we have µ
tk

≤ µ1
k ≤ µtk which contradicts µ1

k /∈ [µ
tk
, µtk].

Now suppose that µ1
k ∈

[
µ
tk
, µtk

]
. We show how to construct densities f1

tk and f0
tk that yield

CDFs F 0
tk F 1

tk satisfying the requirements described above. Since the conditional distribution of y

given (T, z) is continuous, µtk is continuous on its domain and takes on all values in
[
µ
tk
, µtk

]
by the

intermediate value theorem. Thus, there exists a ξ∗ such that µtk(ξ
∗) = µ1

k. Let ftk(τ) = dFtk(τ)/dτ
which is non-negative by the assumption that y is continuously distributed. Now, define

f1
tk(τ) =

ftk(τ)× 1 {τ ∈ Itk(ξ
∗)}

rtk
, f0

tk(τ) =
ftk(τ)× 1 {τ ∈ Itk(ξ

∗)}
1− rtk

.

Clearly f1
tk ≥ 0 and f0

tk ≥ 0. Integrating,∫
R
f1
tk(τ) dτ =

1

rtk

∫
Itk(ξ∗)

ftk(τ) dτ = 1,

∫
R
f0
tk(τ) dτ =

1

1− rtk

∫
ICtk(ξ

∗)
ftk(τ) dτ = 1

where ICtk is the complement of Itk. By construction

rtk

∫
A
f1
tk(τ) dτ + (1− rtk)

∫
A
f0
tk(τ) dτ =

∫
A
ftk(τ) dτ

for any set A. Finally,∫
R
τf1

tk(τ) dτ =
1

rtk

∫
Itk(ξ∗)

τftk(τ) dτ = µtk(ξ
∗) = µ1

k.
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A.2 Point Identification Results

In the proofs of Lemma 2.3, Lemma 2.4, and Theorem 2.3, we employ the shorthand π ≡ Cov(T, z),
ηj ≡ Cov(yj , z), and τj ≡ Cov(Tyj , z) for j = 1, 2, 3. Hence Lemma 2.2 becomes η1 = πθ1, while
Lemma 2.3 becomes η2 = 2τ1θ1 − πθ2, and Lemma 2.4 becomes η3 = 3τ2θ1 − 3τ1θ2 + πθ3.

Proof of Lemma 2.3. By Assumption 2.1 (i) and the basic properties of covariance,

η2 = β2Cov(T ∗, z) + 2β [cCov(T ∗, z) + Cov(T ∗ε, z)] + 2cCov(ε, z) + Cov(ε2, z)

τ1 = cπ +Cov(Tε, z) + βCov(TT ∗, z)

using the fact that T ∗ is binary. Now, by Assumptions 2.1 (iii) and 2.5 we have Cov(ε, z) =
Cov(ε2, z) = 0. And, using Assumptions 2.2 (i) and (ii), one can show that Cov(TT ∗, z) = (1 −
α1)Cov(T

∗, z) and Cov(T ∗, z) = π/(1− α0 − α1). Hence,

η2 = θ1 (β + 2c)π + 2βCov(T ∗ε, z)

2τ1θ1 − πθ2 =
[
2θ1c+ 2θ21(1− α1)− θ2

]
π + 2θ1Cov(Tε, z)

but since θ2 = θ21 [(1− α1) + α0], we see that [2θ21(1 − α1) − θ2] = θ1β. Thus, it suffices to show
that βCov(T ∗ε, z) = θ1Cov(Tε, z). This equality is trivially satisfied when β = 0, so suppose
that β 6= 0. In this case it suffices to show that (1 − α0 − α1)Cov(T

∗ε, z) = Cov(Tε, z). Define
m∗

tk = E [ε|T ∗ = t, z = k] and p∗k = P(T ∗ = 1|z = k). Then, by iterated expectations, Bayes’ rule,
and Assumption 2.2 (iii)

Cov(T ∗ε, z) = q(1− q) (p∗1m
∗
11 − p∗0m

∗
10)

Cov(Tε, z) = q(1− q) {(1− α1) [p
∗
1m

∗
11 − p∗0m

∗
10] + α0 [(1− p∗1)m

∗
01 − (1− p∗0)m

∗
00]}

But by Assumption 2.1 (iii), E[ε|z = k] = m∗
1kp

∗
k+m∗

0k(1−p∗k) = 0 and thus we obtainm∗
0k(1−p∗k) =

−m∗
1kp

∗
k. Therefore (1− α0 − α1)Cov(T

∗ε, z) = Cov(Tε, z) as required.

Proof of Lemma 2.4. Since T ∗ is binary, if follows from the basic properties of covariance that,

η3 = Cov
[
(c+ ε)3, z

]
+ 3βCov[(c+ ε)2T ∗, z] + 3β2Cov[(c+ ε)T ∗, z] + β3Cov(T ∗, z)

τ2 = Cov
[
(c+ ε)2T, z

]
+ 2βCov [(c+ ε)TT ∗, z] + β2Cov(TT ∗, z)

By Assumptions 2.1 (iii), 2.5, and 2.6 (ii) , Cov
[
(c+ ε)3, z

]
= 0. Expanding,

η3 = 3βCov(T ∗ε2, z) +
(
3β2 + 6cβ

)
Cov(T ∗ε, z) +

(
β3 + 3cβ2 + 3c2β

)
Cov(T ∗, z)

τ2 = c2Cov(T, z) + β(β + 2c)Cov(TT ∗, z) + Cov(Tε2, z) + 2cCov(Tε, z) + 2β Cov(TT ∗ε, z)

Now, define s∗tk = E[ε2|T ∗ = t, z = k] and p∗k = P(T ∗ = 1|z = k). By iterated expectations, Bayes’
rule, and Assumption 2.6 (i),

Cov(T ∗ε2, z) = q(1− q)(p∗1s
∗
11 − p∗0s

∗
10)

Cov(Tε2, z) = q(1− q) {(1− α1) [p
∗
1s

∗
11 − p∗0s

∗
10] + α0 [(1− p∗1)s

∗
01 − (1− p∗0)s

∗
00]}

By Assumption 2.5, E[ε2|z = 1] = E[ε2|z = 0] and thus, by iterated expectations we have p∗1s
∗
11 −

p∗0s
∗
10 = − [(1− p∗1)s

∗
01 − (1− p∗0)s

∗
00] which implies

Cov(Tε2, z) = (1− α0 − α1)Cov(T
∗ε2, z). (A.6)
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Similarly by iterated expectations and Assumptions 2.2 (i)–(ii)

Cov(TT ∗ε, z) = q(1− q)(1− α1)(p
∗
1m

∗
1k − p∗0m

∗
10) = (1− α1)Cov(T

∗ε, z) (A.7)

where m∗
tk is defined as in the proof of Lemma 2.3. As shown in the proof of Lemma 2.3,

Cov(TT ∗, z) = (1− α1)Cov(T
∗, z), Cov(T ∗, z) =

π

1− α0 − α1
, Cov(T ∗ε, z) =

Cov(Tε, z)

1− α0 − α1

and combining these equalities with Equations A.6 and A.7, it follows that

τ2 = 2 [(1− α1)(c+ β)− cα0] Cov(T
∗ε, z) +

[
(1− α1)(c+ β)2 − c2α0

]
Cov(T ∗, z)

+ (1− α0 − α1)Cov(T
∗ε2, z)

τ1 = (1− α0 − α1)Cov(T
∗ε, z) + [(1− α1)(c+ β)− cα0] Cov(T

∗, z)

using τ1 = cπ +Cov(Tε, z) + βCov(TT ∗, z) as shown in the proof of Lemma 2.3. Thus,

3τ2θ1 − 3τ1θ2 + πθ3 = K1Cov(T
∗ε2, z) +K2Cov(T

∗ε, z) +K3Cov(T
∗, z)

where K1 ≡ 3θ1(1− α0 − α1) = 3β and

K2 ≡ 6θ1 [(1− α1)(c+ β)− cα0]− 3θ2(1− α0 − α1)

K3 ≡ 3θ1
[
(1− α1)(c+ β)2 − c2α0

]
− 3θ2 [(1− α1)(c+ β)− cα0] + θ3(1− α0 − α1)

Substituting the definitions of θ1, θ2, and θ3 from Equations 4–6, tedious but straightforward algebra
shows that K2 = 3β2+6cβ and K3 = β3+3cβ2+3c2β. Therefore the coefficients of η3 equal those
of 3τ2 − 3τ1θ2 + πθ3 and the result follows.

Proof of Theorem 2.3. Collecting the results of Lemmas 2.2–2.4, we have

η1 = πθ1, η2 = 2τ1θ1 − πθ2, η3 = 3τ2θ1 − 3τ1θ2 + πθ3

which is a linear system in θ1, θ2, θ3 with determinant −π3. Since π 6= 0 by assumption 2.1 (ii),
θ1, θ2 and θ3 are identified. Now, so long as β 6= 0, we can rearrange Equations 5 and 6 to obtain

A = θ2/θ
2
1 = 1 + (α0 − α1) (A.8)

B = θ3/θ
3
1 = (1− α0 − α1)

2 + 6α0(1− α1) (A.9)

Equation A.8 gives (1−α1) = A−α0. Hence (1−α0−α1) = A−2α0 and α0(1−α1) = α0(A−α0).
Substituting into Equation A.9 and simplifying, (A2 − B) + 2Aα0 − 2α2

0 = 0. Substituting for α0

analogously yields a quadratic in (1 − α1) with identical coefficients. It follows that one root of
(A2 −B) + 2Ar − 2r2 = 0 is α0 and the other is 1− α1. Solving,

r =
A

2
±
√
3A2 − 2B =

1

θ21

(
θ2
2

±
√
3θ22 − 2θ1θ3

)
. (A.10)

Substituting Equations 5 and 6, simple algebra shows that 3θ22 − 2θ1θ3 = θ21(1 − α0 − α1)
2. This

quantity is strictly greater than zero since θ1 6= 0 and α0+α1 6= 1. It follows that both roots of the
quadratic are real. Moreover, 3θ22/θ

4
1 − 2θ3/θ

3
1 identifies (1−α0 −α1)

2. Substituting into Equation
4, it follows that β is identified up to sign. If α0 + α1 < 1 then sign(β) = sign(θ1) so that both the
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sign and magnitude of β are identified. If α0 + α1 < 1 then 1 − α1 > α0 so (1 − α1) is the larger
root of (A2 −B) + 2Ar − 2r2 = 0 and α0 is the smaller root.

B Comment on Mahajan (2006) A.2

Expanding on our discussion from Section 2.2 above, we now show that Mahajan’s identification
argument for an endogenous regressor in an additively separable model (A.2) is incorrect. Unless
otherwise indicated, all notation used below is as defined in Section 2.

The first step of Mahajan (2006) A.2 argues (correctly) that under Assumptions 2.1 and 2.2
(i)–(ii), knowledge of α0(x) and α1(x) is sufficient to identify β(x). This step is equivalent to our
Lemma 2.2 above. The second step appeals to Mahajan (2006) Theorem 1 to argue that α0(x)
and α1(x) are indeed point identified. To understand the logic of this second step, we first re-state
Mahajan (2006) Theorem 1 in our notation. As in Section 2 above, T ∗ denotes an unobserved
binary random variable, z is a instrument, T an observed binary surrogate for T ∗, y an outcome of
interest, and x a vector covariates.

Assumption B.1 (Mahajan (2006) Theorem 1). Define g(T ∗,x) ≡ E[y|x, T ∗] and v ≡ y−g(T ∗,x).
Suppose that knowledge of (y, T ∗,x) is sufficient to identify g and that:

(i) P(T ∗ = 1|x, z = 0) 6= P(T ∗ = 1|x, z = 1).

(ii) T is conditionally independent of z given (x, T ∗).

(iii) α0(x) + α1(x) < 1

(iv) E[v|x, z, T ∗, T ] = 0

(v) g(1,x) 6= g(0,x)

Theorem B.1 (Mahajan (2006) Theorem 1). Under Assumption B.1, α0(x) and α1(x) are point
identified, as is g(T ∗,x).

Assumption B.1 (i) is equivalent to our Assumption 2.1 (ii), while Assumptions B.1 (ii)–(iii) are
equivalent to our Assumptions 2.2 (i)–(ii). Assumption B.1 (v) serves the same purpose as β(x) 6= 0
in our Theorem 2.3: unless T ∗ affects y, we cannot identify the mis-classification probabilities. The
key difference between Theorem B.1 and the setting we consider in Section 2 comes from Assumption
B.1 (iv). This is essentially a stronger version of our Assumptions 2.1 (iii) and 2.2 (iii) but applies
to the projection error v, defined in Assumption B.1 rather than the structural error ε, defined in
Assumption 2.1 (i). Accordingly, Theorem B.1 identifies the conditional mean function g rather
than the causal effect β(x).

Although the meaning of the error term changes when we move from a structural to a reduced
form model, the meaning of the mis-classification error rates does not: α0(x) and α1(x) are simply
conditional probabilities for T given (T ∗,x). Step 2 of Mahajan (2006) A.2 relies on this insight.
The idea is to find a way to satisfy Assumption B.1 (iv) simultaneously with Assumptions 2.1 (iii)
and 2.2 (iii), while allowing T ∗ to be endogenous. If this can be achieved, α0(x), α1(x) will be
identified via Theorem B.1, and identification of β(x) will follow from step 1 of A.2 (our Lemma
2.2). To this end, Mahajan (2006) invokes the condition

E(y|x, z, T ∗, T ) = E(y|x, T ∗). (B.1)
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Because Mahajan (2006) A.2 assumes an additively separable model – our Assumption 2.1 (i) – we
see that

E(y|x, z, T ∗, T ) = c(x) + β(x)T ∗ + E(ε|x, z, T ∗, T )

so Equation B.1 is equivalent to E(ε|x, z, T ∗, T ) = E(ε|x, T ∗). Note that this allows T ∗ to be
endogenous, as it does not require E(ε|x, T ∗) = 0. Now, applying Equation B.1 to the definition of
v from Assumption B.1, we have

E(v|x, z, T ∗, T ) = E [y − E(y|x, T ∗) |x, z, T ∗, T ] = 0

which satisfies Assumption B.1 (iv) as required. Based on this reasoning, Mahajan (2006) claims
that Equation B.1 along with Assumptions B.1 (iv), 2.1, and 2.2 (i)–(ii) suffice to identify the
effect β(x) of an endogenous T ∗, so long as g(1,x) 6= g(0,x). As we now show, however, these
Assumptions are contradictory unless T ∗ is exogenous.

By Equation B.1 and Assumption 2.1 (i), E(ε|x, z, T ∗, T ) = E(ε|x, T ∗) and thus by iterated
expectations, we obtain

E(ε|x, T ∗, z) = ET |x,T ∗,z [E(ε|x, T ∗, T, z)] = ET |x,T ∗,z [E(ε|x, T ∗)] = E(ε|x, T ∗). (B.2)

Now, let m∗
tk(x) = E(ε|x, T ∗ = t, z = k). Using this notation, Equation B.2 is equivalent to

m∗
t0(x) = m∗

t1(x) for t = 0, 1. Combining iterated expectations with Assumption 2.1 (iii),

E(ε|x, z = k) = [1− p∗k(x)]m
∗
0k(x) + p∗k(x)m

∗
1k(x) = 0 (B.3)

for k = 0, 1 where p∗k(x) ≡ P(T ∗ = 1|x, z = k). But substituting m∗
t0(x) = m∗

t1(x) into Equation
B.3 for k = 0, 1, we obtain

[1− p∗0(x)]m
∗
00(x) + p∗0(x)m

∗
10(x) = 0

[1− p∗1(x)]m
∗
00(x) + p∗1(x)m

∗
10(x) = 0

The preceding two equalities are convex combinations of m∗
00 and m∗

10. The only way that both
can equal zero simultaneously is if either p∗0(x) = p∗1(x), contradicting Assumption 2.1 (ii), or if
m∗

tk(x) = 0 for all (t, k), which implies that T ∗ is exogenous. Hence Mahajan (2006) A.2 fails:
given the assumption that z is a valid instrument for ε, Equation B.1 implies that either there is
no first-stage relationship between z and T ∗ or that T ∗ is exogenous. The root of the problem
with A.2 is the attempt to use one instrument to satisfy both the assumptions of Theorem B.1 and
Lemma 2.2. If one had access to a second instrument w, or equivalently a second mis-measured
surrogate for T ∗, that satisfied Assumptions B.1, one could use w to recover α0(x) and α1(x) via
Theorem B.1 and z to recover the IV estimand β(x)/[1− α0(x)− α1(x)] via Lemma 2.2.

C Unobserved Heterogeneity

While allowing for arbitrary observed heterogeneity through the covariates x, all of the results pre-
sented above assume an additively separable model – Assumption 2.1 (i). In this section we briefly
discuss how our partial identification results can be interpreted in a local average treatment effects
(LATE) setting. For simplicity, we suppress explicit conditioning on the covariates x throughout.

In lieu of Assumption 2.1 (i), consider a non-separable model of the form y = h(T ∗, z, ε). Let
T ∗(z) denote an individual’s potential treatment and Y (t∗, z) denote her potential outcome, where
t∗, z ∈ {0, 1}. Using this notation we can write Y (t∗, z) = h(t∗, z, ε). Let J ∈ {a, c, d, n} index the
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four LATE principal strata: a = always-taker, c = complier, d = defier, and n = never-taker. If
J = a, then T ∗(z) = 1; if J = c, then T ∗(z) = z; if J = d, then T ∗(z) = 1− z; and if J = n, then
T ∗(z) = 0. In a LATE model, Assumption 2.1 (iii) is replaced by the standard LATE assumptions:

Assumption C.1 (Unconfounded Type). P(J = j|z = 1) = P(J = j|z = 0) for all j ∈ {a, c, d, n}.

Assumption C.2 (Mean Exclusion Restriction). For all t∗ ∈ {0, 1} and j ∈ {a, c, d, n},

E [Y (t∗, 0)|T ∗ = t∗, z = 1] = E [Y (t∗, 1)|T ∗ = t∗, z = 1] = E[Y (t∗)|J = j].

Assumption C.3 (Monotonicity). P
(
T ∗(1) ≥ T ∗(0)

)
= 1

As is well known, Assumption 2.1 (iii) combined with the preceding three conditions implies
that the instrumental variables estimand based on T ∗ identifies the average treatment effect among
compliers:

E[y|z = 1]− E[y|z = 0]

p∗1 − p∗0
= E[Y (1)− Y (0)|J = c].

The numerator of the preceding expression is observed, but under mis-classification the denominator
is not. Notice, however, that Assumptions 2.2 (i)–(ii) only concern the joint distribution of T given
(T ∗, z). As such, they have the same meaning in a LATE model as in an additively separable
model. Imposing these conditions, Lemma 2.1 continues to hold in a LATE model. It follows that
p1 − p0 = (1− α0 − α1)(p

∗
1 − p∗0) so that

E[y|z = 1]− E[y|z = 0]

p1 − p0
=

E[Y (1)− Y (0)|J = c]

1− α0 − α1
.

Moreover, α0 ≤ pk ≤ 1−α1 for all k. Thus, the bound from Corollary 2.1 remains valid in a LATE
model: E[Y (1)− Y (0)|J = c] must lie between the IV and reduced form estimands.

Unlike Assumptions 2.2 (i)–(ii), Assumption 2.2 (iii), non-differential measurement error, is
explicitly stated in terms of the unobservable error term in an additively separable model. Our
derivation of the additional restrictions on (α0, α1) implied by non-differential measurement error
in the proof of Theorem 2.2, however, does not use Assumption 2.2 (iii) directly. Rather, it
uses a condition that is equivalent to it in an additively separable model, namely E[Y |T ∗, T, z] =
E[Y |T ∗, z]. Hence, as long as this equality holds, regardless of whether one is in an additively
separable model or a LATE model, the bounds on (α0, α1) from Theorem 2.2 remain valid. Since
Y = (1− T ∗)Y (0) + T ∗Y (1), the appropriate modification of Assumption 2.2 (iii) is as follows.

Assumption C.4 (Non-differential Measurement Error).

E[Y (0)|T ∗, T, z] = E[Y (0)|T ∗, z] and E[Y (1)|T ∗, T, z] = E[Y (1)|T ∗, z]

To summarize, if one wishes to re-interpret our parameter β as a local average treatment ef-
fect, the partial identification bounds from Theorems 2.1 and 2.2 above remain valid. Assumption
2.1 (i) is replaced by Y = h(T ∗, z, ε), Assumption 2.1 (iii) is replaced by Assumptions C.1–C.3,
and Assumption 2.2 (iii) is replaced by Assumption C.4. In a LATE model, however, our proofs
of sharpness no longer apply, as they do not consider the testable implications of the LATE as-
sumptions themselves. For partial identification results that consider these implications but do not
impose non-differential measurement error, see Ura (Forthcoming). For discussion of the testable
implications of a LATE model, see Kitagawa (2015).
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