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Abstract
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changes her outcome, while indirect effects quantify how her peers’ treatments change
her outcome. We consider the case in which social interactions occur only within known
groups, and take-up decisions do not depend on peers’ offers. In this setting we point
identify local average treatment effects, both direct and indirect, in a flexible random
coefficients model that allows for both heterogenous treatment effects and endogeneous
selection into treatment. We go on to propose a feasible estimator that is consistent
and asymptotically normal as the number and size of groups increases.
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1 Introduction

Random saturation experiments provide a powerful tool for estimating causal effects in
the presence of social interactions—also known as spillovers or interference—by generating
exogenous variation in both individuals’ own treatment offers and the fraction of their peers
who are offered treatment (Hudgens and Halloran, 2008). These two sources of variation
allow researchers to study both direct causal effects—the effect of Alice’s treatment on her
own outcome—and indirect causal effects—the effect of Bob’s treatment on Alice’s outcome.
A complete understanding of both direct and indirect effects is crucial for program evaluation
in settings with social interactions. When considering a national job placement program, for
example, policymakers may worry that the indirect effects of the program could completely
offset the direct effects: in a slack labor market, job placement could merely change who is
employed without affecting the overall employment rate (Crépon et al., 2013).

In this paper we provide methods that use data from a randomized saturation design
to identify and estimate direct and indirect causal effects in the presence of social inter-
actions and one-sided non-compliance. In real-world experiments non-compliance is the
norm rather than the exception. In their study of the French labor market, Crépon et al.
(2013) found that only 35% of workers offered job placement services took them up. Despite
pervasive non-compliance in practice, most of the existing literature on randomized satura-
tion designs either assumes perfect compliance—all subjects adhere to their experimentally-
assigned treatment allocation–or identifies only intent-to-treat-effects—the effect of being
offered treatment. In contrast, we use the experimental design as a source of instrumental
variables to estimate local average treatment effects (LATE) when subjects endogenously
select into treatment on the basis of their experimental offers. In a world of homogeneous
treatment effects, a simple instrumental variables (IV) regression using individual treatment
offers and group saturations as instruments would identify both direct and indirect effects. In
most if not all real-world settings, however, treatment effects vary across individuals. In the
presence of heterogeneity, this “naïve” IV approach will not in general recover interpretable
causal effects. To allow for realistic patterns of heterogeneity in a tractable framework,
we study a flexible random coefficients model in which causal effects may depend on an
individual’s treatment take-up as well as that of her peers.

Our approach relies on four key assumptions. First is partial interference: we assume that
each subject belongs to a single, known group and that social interactions occur only within
groups. This is reasonable in many experimental settings where, for example, groups corre-
spond to villages, and social interactions across them are negligible. Second is anonymous
interactions: we assume that individuals’ potential outcome functions depend on their peers’
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treatment take-up only through the average take-up in their group. Under this assumption
only the number of treated neighbors matters, not their identities (Manski, 2013). In the
absence of detailed network data, the assumption of anonymous interactions is a natural
starting point and is likely to be reasonable in settings such as the labor market example
described above. Third is one-sided non-compliance: we assume that the only individuals
who can take up treatment are those to whom treatment was offered via the experimental
design. One-sided non-compliance is relatively common in practice, for example when an
“encouragement design” is used to introduce a new program, product or technology that
is otherwise unavailable (e.g. Crépon et al., 2013; Miguel and Kremer, 2004). We refer to
our fourth key assumption as individualized offer response, or IOR for short. IOR requires
that each subject’s treatment take-up decision depends only on her own treatment offer,
and not on the offers made to her peers. While IOR is a strong assumption, it is testable
and a priori reasonable in many contexts. In Crépon et al. (2013), for example, local labor
markets are large and potential participants in the job placement program are unlikely to
know each other in advance. As such, they are unlikely to influence each other’s treatment
take-up decisions, even if they may impose employment externalities on one another. IOR
is also reasonable in online settings where other subjects’ take-up decisions are unobserved
(Anderson et al., 2014; Bond et al., 2012; Eckles et al., 2016) or confidential (Yi et al., 2015).

Because it rules out any form of strategic take-up, IOR allows us to divide the population
into never-takers and compliers, two of the traditional LATE strata.1 Under the randomized
saturation design and a standard exclusion restriction, we show how to construct valid and
relevant instruments that identify the average causal effects of interest. The key to our
approach is a result showing that conditioning on gropu size n and the share of compliers
c̄ in a group breaks any dependence between peers’ average take-up and an individual’s
random coefficients. Under the randomized saturation design, the share of Alice’s neighbors
who are offered treatment is exogenous. Under IOR, their average take-up depends only on
how many of them are compliers and whether they are offered treatment. Thus, conditional
on n and c̄, any residual variation in the take-up of Alice’s neighbors comes solely from
the experimental design. Although group size is observed, the share of compliers in a given
group is not. In a large group, however, the rate of take-up among those offered treatment,
call it ĉ, closely approximates c̄. Using this insight, we provide feasible estimators of direct
and indirect causal effects that are consistent and asymptotically normal in the limit as
group size grows at an appropriate rate relative to the number of groups. After constructing
the appropriate instruments, our estimators can be implemented as simple IV regressions
without the need for non-parametric estimation.

1One-sided non-compliance rules out always-takers and defiers.
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This paper relates most closely to recent work by Kang and Imbens (2016) and Imai et al.
(2018), who also study randomized saturation experiments with social interactions under
non-compliance. Imai et al. (2018) identify a “complier average direct effect” (CADE), in
essence a Wald estimand calculated for all groups with the same share of offers (saturation).
While it is identified under a weaker condition than IOR, the CADE is in fact a hybrid
of direct and indirect effects unless one is willing to impose IOR. Under IOR, the CADE
quantifies the effect of an individual’s own treatment take-up, given that her group has
been assigned a particular saturation. In contrast, the direct effects that we recover below
quantify the effect of an individual’s own treatment take-up given that a certain share of
her neighbors have taken up treatment. Kang and Imbens (2016) identify effects similar to
those of Imai et al. (2018) using a variant of our IOR assumption that they call “personalized
encouragement.” Both Kang and Imbens (2016) and Imai et al. (2018) identify well-defined
effects while placing limited structure on the potential outcome functions. The cost of this
generality is that the effects they recover have a “reduced form” flavor, and are only defined
relative to the specific saturations used in the experiment. While our random coefficients
model is slightly more restrictive over the potential outcome functions, it allows us to recover
“fully structural” causal effects that are not specific to the design of the experiment.

Our paper also relates to the applied literature that estimates spillover effects in various
settings. This includes “partial population” studies in which a subset of subjects in the
treatment group are left untreated and their outcomes are compared to those of subjects
in a control group (Angelucci and De Giorgi, 2009; Barrera-Osorio et al., 2011; Bobonis
and Finan, 2009; Duflo and Saez, 2003; Haushofer and Shapiro, 2016). It also includes
cluster-randomized trials where groups are defined by a spatial radius within which social
interactions may arise (Bobba and Gignoux, 2014; Miguel and Kremer, 2004) and more recent
papers that use a randomized saturation design (Banerjee et al., 2012; Bursztyn et al., 2019;
Giné and Mansuri, 2018; Sinclair et al., 2012). In general, this literature estimates intent-
to-treat (ITT) effects. Two notable exceptions are Crépon et al. (2013) and Akram et al.
(2018) who estimate effects that are similar in spirit to the CADE of Imai et al. (2018).
Our identification approach also relates to a large literature on random coefficients models,
the closest being Wooldridge (2004) and Masten and Torgovitsky (2016), as well as methods
that identify structural effects using control functions (Altonji and Matzkin, 2005; Imbens
and Newey, 2009).

The remainder of the paper is organized as follows. Section 2 details our notation and
assumptions, while section 3 presents our identification results. Section 4 provides consis-
tent and asymptotically normal estimators of the effects identified in section 3, and Section
section 5 concludes. Proofs appear in the appendix.
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2 Notation and Assumptions

We observe N individuals divided between G groups. We assume throughout the paper that
each group has at least two members so there is scope for social interactions. Let g = 1, . . . , G

index groups and i = 1, . . . , Ng index individuals within a given group g. Using this notation,
N =

∑
gNg. For each individual (i, g) we observe a binary treatment offer Zig, an indicator

of treatment take-up Dig, and an outcome Yig. For each group g we observe a saturation
Sg ∈ [0, 1] that determines the fraction of individuals offered treatment in that group. A bold
letter indicates a vector and a g-subscript shows that this vector is restricted to members of
a particular group. For example Z is the N -vector of all treatment offers Zig while Zg is
the Ng-vector obtained by restricting Z to group g. Define D and Dg analogously and let
S denote the G-vector of all Sg. At various points in our discussion we will need to refer to
the average value of a variable for everyone in a group besides person (i, g). As shorthand,
we refer to these other individuals as person (i, g)’s neighbors. To indicate such an average,
we use a bar along with an (i, g) subscript. For instance, D̄ig denotes the treatment take-up
rate in group g excluding (i, g), while Z̄ig is the analogous treatment offer rate:

D̄ig ≡
1

Ng − 1

∑
j 6=i

Djg, Z̄ig ≡
1

Ng − 1

∑
j 6=i

Zjg. (1)

Note that, under this definition, D̄ig and Z̄ig vary across individuals in the same group
depending on their values of Dig or Zig. For example in a group of eleven people, of whom
five take up treatment, D̄ig = 0.5 if Dig = 0 and 0.4 if Dig = 1. We now introduce our basic
assumptions, beginning with the experimental design.

Assumption 1 (Assignment of Saturations). Let S = {s1, s2, . . . , sJ} where sj ∈ [0, 1] for
all j. Saturations are assigned to groups completely at random from S such that mj groups
are assigned to saturation sj with probability one, where

∑J
j=1mj = G. In other words,

P(Sg = sj) =

{
mj/G for j = 1, . . . , J

0 otherwise

Assumption 1 details the first stage of the randomized saturation design. In this stage,
each group g is assigned a saturation Sg drawn completely at random from a set S. In
the example from Figure 1, fifty groups (balls) are divided equally between five saturations
(urns), namely S = {0, 0.25, 0.5, 0.75, 1}. The saturation drawn in this first stage determines
the fraction of individuals in the group that will be offered treatment in the second stage.
Figure 1, for example, depicts a group of eight individuals that has been assigned to the
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0% 25% 50% 75% 100%

0 0

1 0 0 0

0 1

Figure 1: Randomized Saturation Design. In the first stage groups (balls) are randomly assigned
to saturations (urns). In the second stage, individuals within a group are randomly assigned
treatment offers at the saturation selected in the first stage. The figure zooms in on a group of size
eight that has been assigned to a 25% saturation: two individuals are offered treatment.

25% saturation: two are offered treatment and six are not. For simplicity we assume that
treatment offers in the second stage follow a Bernoulli design, in which Sg determines the
probability of treatment rather than the number of treatment offers.2

Assumption 2 (Bernoulli Offers).

P(Zg = z|Sg = s,Ng = n) =
n∏

i=1

szi(1− s)1−zi .

The randomized saturation design creates exogenous variation at the individual and
group levels. Within a group some individuals are offered while others are not. Between
groups, some have a large number of individuals offered treatment—a high saturation—while
others do not. Many randomized saturation experiments, like the illustration in Figure 1,
feature a 0% saturation or even a 100% saturation. We refer to 0% and 100% saturations
collectively as corner saturations to distinguish them from all other saturations, which we call

2With minor modifications, all of our results can be extended to a completely randomized design, in
which the number of treatment offers made to a given group is fixed conditional on Sg.
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interior. There is no variation in treatment offers between individuals in a group assigned a
corner saturation. For this reason, as we discuss in section 3 below, the number of interior
saturations in the design will determine the flexibility with which we can model potential
outcome functions.

Assumptions 1–2 concern the design of the experiment. Our remaining assumptions, in
contrast, concern the potential outcome and treatment functions. Without imposing any
restrictions, an individual’s potential outcome function Yig(·) could in principle depend on
the treatment take-up of all individuals in the sample. We denote this unrestricted potential
outcome function by Yig(D). Assumption 3 restricts Yig(·) to depend only on Dig and D̄ig

via a random coefficients model.

Assumption 3 (Random Coefficients Model). Let f(·) be a K-vector of known functions
fk : [0, 1] 7→ R, each of which satisfies supx∈[0,1] |fk(x)| <∞. We assume that

Yig(D) = Yig(Dg) = Yig(Dig, D̄ig) = f(D̄ig)
′ [(1−Dig)θig +Digψig

]
where θig and ψig are K-dimensional random vectors that may be dependent on (Dig, D̄ig).

The first equality in Assumption 3 is the so-called partial interference assumption, used
widely in the literature on spillover effects. This assumption states that there are no social in-
teractions between individuals in different groups: only the treatment take-up of individuals
in group g affects the potential outcome of person (i, g). The second equality in Assump-
tion 3 states that person (i, g)’s potential outcome is only affected by the treatment take-up
of the others in her group through the aggregate D̄ig.3 This is related to the anonymous
interactions assumption from the network literature as it implies that only the number of
(i, g)’s neighbors who take up treatment matters for her outcome; the identities of the neigh-
bors are irrelevant (Manski, 2013). The third equality in Assumption 3 posits a finite basis
function expansion for the potential outcome functions Yig(0, D̄ig) and Yig(1, D̄ig), namely

Yig(0, D̄ig) =
K∑
k=1

θ
(k)
ig fk(D̄ig), Yig(1, D̄ig) =

K∑
k=1

ψ
(k)
ig fk(D̄ig)

or, written more compactly in matrix form,

Yig = X′
igBig, Xig ≡

[
1

Dig

]
⊗ f(D̄ig), Big ≡

[
θig

ψig − θig

]
(2)

where the coefficient vectors θig and ψig, and hence Big, are allowed to vary arbitrarily
3Recall that D̄ig is defined to exclude person (i, g).
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across groups and individuals. If, for example, person (i, g) has some prior knowledge of her
potential outcome function Yig(·, ·), her take-up decision may depend on θig and ψig. More
generally, the same unobserved characteristics that determine a person’s decision to take up
treatment could affect her potential outcomes. To account for these possibilities, we allow
arbitrary statistical dependence between (Dig, D̄ig) and Big.

Ideally, our goal would be to identify the average direct and indirect causal effects of
the binary treatment Dig. Under Assumption 3, we define these as follows, building on
the definitions of Hudgens and Halloran (2008). The direct treatment effect, DE, gives the
average effect of exogenously changing an individual’s own treatment Dig from 0 to 1 while
holding the share of her treated neighbors D̄ig fixed at d̄, namely

DE(d̄) ≡ E
[
Yig(1, d̄)− Yig(0, d̄)

]
= f(d̄)′E

[
ψig − θig

]
(3)

where the expectations are taken over all individuals in the population from which our
experimental subjects were drawn. Recall that D̄ig excludes person (i, g), ensuring that
DE(d̄) is well-defined. An indirect treatment effect, in contrast, gives the average effect
of exogenously increasing a person’s share of treated neighbors D̄ig from d̄ to d̄ + ∆ while
holding her own treatment Dig fixed at d, in other words

IEd(d̄,∆) ≡ E
[
Yig(d, d̄+∆)− Yig(d, d̄)

]
=
[
f(d̄+∆)− f(d̄)

]′ {
(1− d)E [θig] + dE

[
ψig

]} (4)

where ∆ is a positive increment. There are two indirect treatment effect functions, IE0 and
IE1, corresponding to the two possible values at which we could hold Dig fixed: a spillover on
the untreated, and a spillover on the treated. Because the direct and indirect causal effects
are fully determined by E[Big] under Assumption 3, this is our object of interest below. For
example, if f(x)′ = [1 x] we obtain a linear model of the form

Yig = αig + βigDig + γigD̄ig + δigDigD̄ig. (5)

In this case the direct effect is DE(d̄) = E[βig] +E[δig]d̄ while the indirect effects are

IE0(d̄,∆) = ∆×E[γig], IE1(d̄,∆) = ∆×E[γig + δig].

Figure 2 presents a hypothetical example of (5) in a setting with employment displace-
ment effects. Suppose that Yig is Alice’s probability of long-term employment. Both Yig(1, d̄)
and Yig(0, d̄) have a negative slope. This means that Alice’s probability of long-term em-
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Yig

D̄ig

αig + βig Yig(1, D̄ig)

γig + δig

αig

Yig(0, D̄ig)

0

γig

Figure 2: A hypothetical example of the linear potential outcomes model from (5). The slope of
the bottom line, γig, is the indirect effect when untreated while that of the top line, γig + δig, is the
marginal indirect effect when treated. The distance between the two lines is the direct treatment
effect.

ployment decreases if more of her neighbors obtain job placement services. But since δig is
positive, the spillover is more harmful if Alice is untreated. Alice’s direct effect of treatment
Yig(1, d̄)−Yig(0, d̄) is positive for all d̄ in this example and increases as d̄ does: job placement
services are more valuable to Alice when more of her neighbors obtain them. By averaging
these effects for everyone in the population, we obtain IE0, IE1, and DE.

Under perfect compliance Dig would simply equal Zig, making both Dig and D̄ig ex-
ogenous. In this case a sample analogue of E[Yig(d, d̄)] could be used to recover all of the
treatment effects discussed above, at least at values of d̄ that arise in the experimental design.
Unfortunately non-compliance is pervasive in real-world experiments, greatly complicating
the identification of causal effects. In a large-scale experiment carried out in France, for ex-
ample, only 35% of unemployed workers offered job placement services took them up (Crépon
et al., 2013). Those who did take up treatment likely differ in myriad ways from those who
did not: they may, for example, be more conscientious. One way to to avoid this problem
of self-selection is to carry out an intent-to-treat (ITT) analysis, conditioning on Zig and Sg

rather than Dig and D̄ig. But with take-up rates as low as 35%, ITT estimates could be very
far from the causal effects of interest. In this paper we adopt a different approach. Following
the tradition in the local average treatment effect (LATE) literature, we provide conditions
under which direct and indirect causal effects–rather than ITT effects–can be identified for
well-defined sub-populations of individuals. We focus on the case of one-sided noncompli-
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ance, in which only those offered treatment can take it up. One-sided non-compliance is
fairly common in practice (e.g. Crépon et al., 2013) and simplifies the analysis considerably.4

Assumption 4 (One-sided Non-compliance). If Zig = 0 then Dig = 0.

To account for endogenous treatment take-up, we define potential treatment functions
Dig(·). In principle these could depend on the treatment offers of every individual, Z in the
experiment. The following assumption restricts Dig(·) to permit identification of the direct
and indirect causal effects described above.

Assumption 5 (IOR). Dig(Z) = Dig(Zg) = Dig(Zig, Z̄ig) = Dig(Zig).

The first equality of Assumption 5 is a partial interference assumption: it requires that
there are no social interactions in take-up between individuals in different groups. The
second equality of Assumption 5 states that person (i, g)’s take-up decision depends on the
treatment offers of others in her group only through the fraction Z̄ig of treatment offers
made to the others in her group.5 Unfortunately these first two equalities are not in general
sufficient to point identify direct and indirect causal effects. The third equality, which we
call individualistic offer response or IOR for short, imposes the further restriction that each
person’s take-up decision depends only on her own treatment offer. IOR states that there
are no social interactions in take-up.6 This is a strong assumption, but one that has also
appeared in the existing literature. Kang and Imbens (2016), for example, employ a variant
of IOR that they call “personalized encouragement.” And while Imai et al. (2018) derive
their so-called “complier average direct effect (CADE)” under a weaker condition than IOR,
the CADE is in fact a hybrid of direct and indirect effects unless one is willing to assume
that there are no social interactions in take-up. Fortunately, IOR is testable: it implies, for
example, that E[Dig|Zig = 1, Sg = s] does not vary with s. If the observed average take-up
rate among individuals who are offered treatment varies with saturation, this indicates a
violation of IOR.

Under IOR and one-sided non-compliance (Assumptions 4 and 5), we can divide individ-
uals into never-takers and compliers, two of the principal strata from the LATE literature.
Never-takers are defined as those for whom Dig(0) = Dig(1) = 0, while compliers are those
for whom Dig(z) = z for all z.7 Defining Cig to be the indicator that person (i, g) is a

4An extension of our results to two-sided non-compliance is currently in progress.
5Recall that the average Z̄ig is defined to exclude (i, g).
6Work in progress explores the possibility of relaxing IOR in specific settings to obtain point, or at least

partial identification.
7Under one-sided non-compliance, Assumption 4, there are no always-takers.
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complier, Assumptions 4–5 imply that

Dig = CigZig, D̄ig =
1

Ng − 1

∑
j 6=i

CjgZjg. (6)

By analogy to Z̄ig and D̄ig, we define C̄ig to be the share of compliers among person (i, g)’s
neighbors in group g, namely

C̄ig =
1

Ng − 1

∑
j 6=i

Cjg. (7)

Note that C̄ig varies across individuals in the same group, depending on their values of Cig.
Finally, let Cg denote the vector of Cig for all individuals in group g.

Our final assumption is an exclusion restriction for the treatment offers Zg and saturation
Sg. To state it we require two additional pieces of notation. First, let Bg denote the vector
that stacks Big for all individuals in group g. Second, following Dawid (1979), let “ |= ” denote
(conditional) independence so that X |= Y indicates that X is statistically independent of Y
while X |= Y |Z indicates that X is conditionally independent of Y given Z. Using this
notation, the exclusion restriction is as follows.

Assumption 6 (Exclusion Restriction).

(i) Sg |= (Cg,Bg, Ng)

(ii) Zg |= (Cg,Bg)|(Sg, Ng)

Intuitively, Assumption 6 states that (Cg,Bg, Ng) are “predetermined” with respect to
the treatment offers and saturations. In a traditional LATE setting, the counterparts of
Assumption 6 are the “unconfounded type” assumption and the independence of potential
outcomes and treatment offers. Assumption 6 could be violated in a number of ways. If,
for example, individuals chose their group membership based on knowledge of their group’s
saturation, Ng would not be independent of Sg. Similarly, if some individuals decided to
comply with their treatment offers only because their group was assigned a high saturation,
Cg would not be independent of Sg. This latter possibility illustrates that Assumption 6
partially embeds IOR by ruling out “selection into compliance.” More prosaically, Assump-
tion 6 would be violated if either Sg or Zig had a direct effect on the random coefficients
Bg. Notice that part (ii) of Assumption 6 conditions on (Sg, Ng). This is because the second
stage of the randomized saturation experiment assigns Zg conditional on this information:
see Assumption 2.
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3 Identification

Under Assumption 3, the functional form of the random coefficients model is known. So
why not simply use (Zig, Sg) as instrumental variables for Dig and f(D̄ig)? If the first-stage
relationship between instruments and endogenous regressors is homogeneous, two-stage least
squares identifies the average effects in a random coefficient model, i.e. E[θig] and E[ψig−θig]
under (2) (Heckman and Vytlacil, 1998; Wooldridge, 1997, 2003, 2016). In our case, however,
this result does not apply: the following lemma shows that the first stage is heterogeneous
because the conditional distribution of D̄ig given Sg varies with (C̄ig, Ng).

Lemma 1. Let c̄ be a value in [0, 1] such that (n − 1)c̄ is a non-negative integer. Under
Assumptions 1–2 and 4–6 and conditional on (Ng = n, Sg = s,Cg = c, C̄ig = c̄, Zig = z),
(n− 1)D̄ig follows a Binomial ((n− 1)c̄, s) distribution.

Intuitively, the problem presented by the Lemma 1 is as follows. Although Sg is randomly
assigned, the variation that it induces in D̄ig is mediated by the share of compliers C̄ig.
Accordingly if C̄ig—a source of first-stage heterogeneity—is correlated with the random
coefficients in the second stage, the IV estimator will not identify the effects of interest.
To make this problem more concrete, consider the linear potential outcomes model from (5)
and let ϑIV be the IV estimand using instruments (1, Zig, Sg, ZigSg). In this example ϑIV

takes a particularly simple form, as shown in the following lemma.

Lemma 2. Let ϑIV be the IV estimand from a regression of Yig on Xig ≡ (1, Dig, D̄ig, Dig, D̄ig)
′

with instruments Z ig ≡ (1, Zig, Sg, ZigSg)
′, namely

ϑIV ≡
[
αIV βIV γIV δIV

]′
= E

[
Z igX

′
ig

]−1
E [Z igYig] .

assuming that E[Z igX
′
ig] is invertible. Then, under (5) and Assumptions 1–2 and 4–6,

αIV = E [αig] βIV = E [βig|Cig = 1]

γIV = E [γig] +
Cov(C̄ig, γig)

E(C̄ig)
δIV = E [δig|Cig = 1] +

Cov(C̄ig, δig|Cig = 1)

E(C̄ig|Cig = 1)
.

As we see from Lemma 2, IV identifies the population average of αig, along with the
population average of βig for the subset of individuals who select into treatment. Neither
of these, however, is itself a causal effect. In general, IV recovers neither direct nor indirect
causal effects for any well-defined group of individuals. Specializing (4) to the linear model
from (5) gives IE0(d̄,∆) = E[γig]∆. In other words, E[γig] is an average spillover. Lemma 2
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shows that IV fails to identify this quantity unless the individual-specific spillovers γig are
uncorrelated with the share of compliers C̄ig. This condition could easily fail in practice. In
the labor market example from the introduction, cities with a particularly depressed labor
market might be expected to contain a large share of compliers. If negative spillovers are
more intense in such cities, IV will not recover the average indirect effect. A similar problem
hampers the interpretation of δIV. Under (5) the average direct effect for compliers, as a
function of d̄, is given by E[βig|Cig = 1] + E[δig|Cig = 1]d̄. While IV identifies the intercept
of this function, it only identifies the slope if δig is uncorrelated with C̄ig for compliers.

As this example illustrates, identifying direct and indirect causal effects requires us to
correct for possible dependence between individual-specific coefficients and group-level take-
up that arises from the first-stage relationship in Lemma 1. The key to our approach, as
shown in the following theorem, is to condition on C̄ig and Ng.

Theorem 1. Under Assumptions 1–2 and 4–6, (Sg, Zig, D̄ig) |= (Big, Cig)|(C̄ig, Ng).

Theorem 1 implies that conditioning on (C̄ig, Ng) is sufficient to break any dependence
between f(D̄ig) and (Big, Cig) that may be present. The intuition for this result is as follows.
Conditional on C̄ig and Ng, we know precisely how many of (i, g)’s neighbors are compliers.
Given this information, IOR implies that all remaining variation in D̄ig is arises solely from
experimental variation in the saturation Sg assigned to different groups, and the share of
compliers offered treatment across groups assigned the same saturation. So long as Zig

and Sg do not affect (Big, Cg), Assumption 6, it follows that (Zig, D̄ig, Sg) are exogenous
given (C̄ig, Ng), even when individuals decide whether or not to take up treatment based on
knowledge of their potential outcome functions.

Before stating our identification results, we require some additional notation and one
further assumption. Define the vector Wig and matrix-valued functions Q,Q0,Q1 as follows:

Q(c̄, n) ≡ E
[
WigW

′
ig|C̄ig = c̄, Ng = n

]
, Wig ≡

[
1 Zig

]′
⊗ f(D̄ig) (8)

Q0(c̄, n) ≡ E
[
(1− Zig)f(D̄ig)f(D̄ig)

′|C̄ig = c̄, Ng = n
]

(9)

Q1(c̄, n) ≡ E
[
Zigf(D̄ig)f(D̄ig)

′|C̄ig = c̄, Ng = n
]
. (10)

We use Q,Q0,Q1 below to construct instrumental variables that are not subject to the
shortcomings of Z ig from Lemma 2 discussed above. The final ingredient that we need to
construct these alternative instruments is a rank condition.

Assumption 7 (Rank Condition).

(i) 0 < E(Cig) < 1
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(ii) Q(c̄, n) is invertible at every point (c̄, n) in the support of (C̄ig, Ng).

Part (i) of Assumption 7 asserts that there is at least some degree of non-compliance
with the experimental treatment offers, E(Cig) < 1, and that the population contains at
least some compliers, E(Cig) > 0. Part (ii) requires that the matrix-valued function Q

defined in (8) is full rank when evaluated at any share of compliers c̄ and group size n that
occur in the population. Assumption 7 does not explicitly restrict Q0 or Q1. By the linearity
of conditional expectation, however,

Q(c̄, n) =

[
Q0(c̄, n) +Q1(c̄, n) Q1(c̄, n)

Q1(c̄, n) Q1(c̄, n)

]
(11)

so Assumption 7(ii) could equivalently be stated in terms of Q0 and Q1.

Lemma 3. Q(c̄, n) is invertible iff Q0(c̄, n) and Q1(c̄, n) are both invertible, in which case

Q(c̄, n)−1 =

[
Q0(c̄, n)

−1 −Q0(c̄, n)
−1

−Q0(c̄, n)
−1 Q0(c̄, n)

−1 +Q1(c̄, n)
−1

]
.

We discuss low-level conditions for the invertibility of (Q0,Q1), and hence Q, below.
Having assumed the necessary rank condition, we can now state our main identification
results. The following theorem shows how Q0(C̄ig, Ng) and Q1(C̄ig, Ng) can be used to
construct instrumental variables that identify average values of the random coefficients for
well-defined groups of individuals.

Theorem 2. Define the instrument vectors

ZW
ig ≡ Q(C̄ig, Ng)

−1Wig, Z0
ig ≡ Q0(C̄ig, Ng)

−1f(D̄ig), Z1
ig ≡ Q1(C̄ig, Ng)

−1f(D̄ig)

where Q0,Q1,Q, and Wig are as given in (8)–(10). Then, under Assumptions 3–5 and 7
and assuming that (Zig, D̄ig) |= (Big, Cig)|(C̄ig, Ng), we have

(i)

[
E(θig)

E(ψig − θig|Cig = 1)

]
= E

[
ZW

ig X
′
ig

]−1
E
[
ZW

ig Yig
]
,

(ii) E
[
ψig|Cig = 1

]
= E

[
Z1

ig

{
Digf(D̄ig)

}′]−1

E
[
Z1

ig {DigYig}
]

(iii) E [θig|Cig = 0] = E

[
Z1

ig

{
Zig(1−Dig)f(D̄ig)

}′]−1

E
[
Z1

ig {Zig(1−Dig)Yig}
]
, and

(iv) E [θig] = E

[
Z0

ig

{
(1− Zig)f(D̄ig)

}′]−1

E
[
Z0

ig {(1− Zig)Yig}
]
.
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The first part of Theorem 2 identifies the average effects that the naïve IV approach
from Lemma 2 in general fails to. Rather than using the randomly assigned saturation
Sg as a source of instruments for f(D̄ig) we transform this vector of endogenous regressors
into a set of exogenous instruments using Q0(C̄ig, Ng)

−1 and Q1(C̄ig, Ng)
−1. Parts (ii) and

(iii) use a similar approach to obtain moment equations for the average value of ψig for
compliers and θig for never-takers. Given part (i), part (iv) is technically redundant, but
it is convenient to have an expression for E(θig) in isolation. To understand the intuition
behind the instruments from Theorem 2, consider the linear potential outcomes example
from (5) above. Here we have f(x) = (1, x)′ and thus

Qz(C̄ig, Ng) = P(Zig = z)E

[(
1 D̄ig

D̄ig D̄2
ig

)∣∣∣∣∣ C̄ig, Ng, Zig = z

]
, z ∈ {0, 1}

using the fact that Zig |= (C̄ig, Ng) by Lemma A.2. It follows after a few steps of algebra that

Qz(C̄ig, Ng)
−1f(D̄ig) =

1

P(Zig = z)


E(D̄2

ig|C̄ig, Ng, Zig = z)− D̄igE(D̄ig|C̄ig, Ng, Zig = z)

Var(D̄ig|C̄ig, Ng, Zig = z)

D̄ig −E(D̄ig|C̄ig, Ng, Zig = z)

Var(D̄ig|C̄ig, Ng, Zig = z)

 .

While D̄ig is endogenous, we see that the scaled difference between D̄ig and its conditional
expectation is a valid instrument under the linear potential outcomes model. Intuitively,
this transformation adjusts for the first-stage heterogeneity discussed at the beginning of
this section: after controlling for differences in (C̄ig, Ng), the remaining variation in D̄ig

arises only from the experimentally–assigned saturations. Thus, rather than using Sg as
an instrument directly, we use it indirectly to generate variation in D̄ig given (C̄ig, Ng). As
discussed below, this is crucial for part (ii) of Assumption 7.

Notice that Theorem 2 does not explicitly invoke the randomized saturation design, As-
sumptions 1–2, or the exclusion restriction, Assumption 6. Using this result for identification,
however, requires two conditions. First we need to satisfy (Zig, D̄ig) |= (Big, Cig)|(C̄ig, Ng). As
shown in Theorem 1 above, the randomized saturation design and exclusion restriction are
sufficient for this condition to hold under one-sided non-compliance and IOR, Assumptions 4
and 5. Second, we need to show that the functions Q0,Q1 are identified in order to construct
the instruments from Theorem 2. Fortunately, these functions are in fact known under the
randomized saturation design and exclusion restriction.8 In particular, they depend only on

8As Theorem 2 does not strictly speaking require a randomized saturation design, it could in principle
be applied in other settings, e.g. a “natural” experiment, if our other assumptions are satisfied. In this case,
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the distribution of D̄ig|(Zig, C̄ig, Ng), which can be calculated from Lemma 1, and the distri-
bution of Zig|(C̄ig, Ng), which coincides with its unconditional distribution by Lemma A.2.
As such, we can always calculate Q0(C̄ig, Ng) and Q1(C̄ig, Ng) by simulating the experimen-
tal design. Depending on the choice of f , analytical expressions for Q0,Q1 may be available,
as shown below for the linear potential outcomes model from (5).

Constructing the instruments that appear in Theorem 2 requires us to evaluate Q0 and Q1

at (C̄ig, Ng). While the group size Ng is observed, the share of compliers C̄ig is not. In large
groups, however, C̄ig can be precisely estimated by calculating the rate of treatment take-up
among the neighbors of (i, g) who are offered treatment. In the following section we use this
approach to provide consistent and asymptotically normal estimators of the parameters from
Theorem 2. For the remainder of this section, however, we consider identification conditional
on knowledge of C̄ig. Subject to this qualification, the following result catalogues the full set
of causal effects that are identified under our assumptions.

Theorem 3. Given knowledge of C̄ig the following are identified under Assumptions 1–7:

(i) IE0(d̄,∆) ≡ E[Yig(0, d̄+∆)− Yig(0, d̄)],

(ii) DE(d̄|Dig = 1) ≡ E
[
Yig(1, d̄)− Yig(0, d̄)|Dig = 1

]
,

(iii) IE0(d̄,∆|Dig = 1) ≡ E[Yig(0, d̄+∆)− Yig(0, d̄)|Dig = 1],

(iv) IE1(d̄,∆|Dig = 1) ≡ E[Yig(1, d̄+∆)− Yig(1, d̄)|Dig = 1],

(v) IE0(d̄,∆|Cig = 0) ≡ E[Yig(0, d̄+∆)− Yig(0, d̄)|Cig = 0],

Part (i) of Theorem 3 is an indirect treatment effect, as defined in (4) above. It measures
the causal impact of increasing the treatment take-up rate among Alice’s neighbors from d̄

to (d̄ + ∆) when Alice’s own treatment is held fixed at zero. In the Crépon et al. (2013)
experiment discussed in our empirical example below, this corresponds to the average labor
market displacement effect. Whereas part (i) is an average treatment effect, parts (ii)–(iv)
are the effects of treatment on the treated.9 Part (ii) gives the direct effect of treating
Alice while holding the treatment take-up rate of her neighbors fixed at d̄, while (iii) and
(iv) give the indirect effect of increasing her neighbors’ treatment take-up from d̄ to d̄ + ∆

while holding Alice’s treatment fixed at either zero, part (iii), or one, part (iv). Part (v) is
a LATE generalization of Equation 4: it gives the indirect effect for never-takers, holding
their treatment fixed at zero. While we identify the full set of direct and indirect effects for

Q0,Q1 would not be known but could potentially be recovered via a non-parametric approach.
9Because we consider a setting with one-sided non-compliance, any experimental participant with Dig = 1

must be a complier.
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the treated sub-population, we only identify a subset of these effects for other groups. By
definition, never-takers cannot be observed with Dig = 1. As such, we cannot identify direct
treatment effects for this group or indirect treatment effects when Dig is held fixed at one.
This in turn implies that we cannot identify the average direct effect for the population as
a whole, DE(d̄), or the average indirect effect when Dig is held fixed at one, IE1(d̄,∆).

Given that Q0 and Q1 are completely determined by the experimental design, we can
directly check part (ii) of Assumption 7 for any choice of basis functions f and probability
distribution over saturations. Consider again the linear potential outcomes model from (5).
In this example f (x) = (1, x)′ and thus,

Q0(c̄, n) =

[
E {1− Sg} c̄E {Sg(1− Sg)}

c̄E {Sg(1− Sg)} c̄2E
{
S2
g (1− Sg)

}
+ c̄

n−1
E {Sg(1− Sg)

2}

]
(12)

Q1(c̄, n) =

[
E {Sg} c̄E

{
S2
g

}
c̄E
{
S2
g

}
c̄2E

{
S3
g

}
+ c̄

n−1
E
{
S2
g (1− Sg)

}
.

]
(13)

by Bayes’ Theorem, the Law of Total Probability, and Lemmas 1 and A.2. Suppose first
that there is a single saturation s. Then (12) and (13) simplify to yield

|Q0(c̄, n)| =
c̄s(1− s)3

n− 1
, |Q1(c̄, n)| =

c̄s3(1− s)

n− 1
.

so that Q0(c̄, n) and Q1(c̄, n) are both invertible for any n and all c̄ greater than zero provided
that 0 < s < 1. The identifying power of this “degenerate” randomized saturation design,
however, is weak: Q0,Q1 are arbitrarily close to being singular for any c̄ if n is sufficiently
large. Consider next a so-called “cluster randomized” experiment in which there are two
saturations, 0 and 1, and P(Sg = 1) = p. Calculating the expectations in (12) and (13),

Q0(c̄, n) =

[
(1− p) 0

0 0

]
, Q1(c̄, n) =

[
p c̄p

c̄p c̄2p

]
.

In this case neither Q0 nor Q1 is invertible for any values of n and c̄. Finally, consider a
design with two distinct, equally likely saturations sL < sH . For this design, straightforward
but tedious algebra gives

|Q0(c̄, n)| =
c̄2

4
(1− sL)(1− sH)(sH − sL)

2 +
c̄ [(1− sL) + (1− sH)] [sL(1− sL)

2 + sH(1− sH)
2]

4(n− 1)

|Q1(c̄, n)| =
c̄2

4
sLsH(sH − sL)

2 +
c̄ (sL + sH) [s

2
L(1− sL) + s2H(1− sH)]

4(n− 1)
.
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So long as neither sL nor sH equals zero or one, both terms in each expression are strictly
positive for any c̄ > 0, so that Q0 and Q1 are invertible. Moreover, in contrast to the single
saturation design discussed above, this design does not suffer from a weak identification
problem. While the second term in each of the preceding equalities vanishes for large n,
the first term does not. Thus, two interior saturations are sufficient to strongly identify the
linear potential outcomes model.10

As the three preceding examples show, two distinct sources of experimental variation
determine the rank of Q0(c̄, n) and Q1(c̄, n): “between” saturation variation, and “within”
saturation variation. Our first example lacks “between” variation because each group is
assigned the same saturation, Sg = s. Yet even with a single saturation, there is still
“within” variation under Assumption 2, because the number of offers made to a given group
is random. This “within” variation, however, is negligible when n is large. In our second
example, the cluster randomized experiment, the situation is reversed. Because everyone in a
given group is either offered (Sg = 0) or unoffered (Sg = 1), this design generates no “within”
variation. While a cluster randomized design does generate some “between” variation, it is
too coarse to identify our effects of interest: under our assumptions D̄ig equals zero when
Sg = 0 and C̄ig when Sg = 1. Our third example, with two saturations 0 < sL < sH < 1,
features sufficient “between” variation to identify the effects of interest even when n is so
large that “within” variation becomes negligible.

4 Estimation and Inference

If C̄ig were observed, a handful of just-identified IV regressions would suffice to estimate
the causal effects from Theorem 3. While C̄ig is unobserved in practice, fortunately we can
estimate it under one-sided non-compliance by comparing treatment take-up to the share of
treatment offers, i.e.

Ĉig ≡

D̄ig/Z̄ig, if Z̄ig > 0

0, otherwise
(14)

where we arbitrarily define Ĉig = 0 if none of (i, g)’s neighbors are offered treatment.11 In
this section we use (14) to derive feasible, consistent, and asymptotically normal estimators
of the direct and indirect causal effects identified in section 3. For simplicity, we assume
throughout that the random saturation Sg is bounded below by s > 0. Because we cannot

10In general, sufficient conditions for Assumption 7(ii) will depend on the specific choice of basis functions
f . For large n, however, a necessary condition is that the design contains at least as many distinct interior
saturations as there are elements in f . For details, see Appendix C.

11Under Assumption 2 it is possible, although unlikely, that Z̄ig could be zero even if Sg > 0.
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X ig R W ig

(i)
[

1
Dig

]
⊗ f(D̄ig) Q

[
1
Zig

]
⊗ f(D̄ig)

(ii) f(D̄ig) Q1 f(D̄ig)Dig

(iii) f(D̄ig) Q1 f(D̄ig)Zig(1−Dig)

(iv) f(D̄ig) Q0 f(D̄ig)(1− Zig)

Table 1: This table defines the shorthand from (15) for the four sample analogue estimators
corresponding the parts of Theorem 2. In each part, the vector of regressors is Xig, the true
instrument vector is Z ig ≡ R(C̄ig, Ng)

−1W ig, and the estimated instrument vector is Ẑ ig ≡
R(Ĉig, Ng)

+W ig, where M+ denotes the Moore-Penrose inverse of a square matrix M, and Ĉig is
as defined in (14). The functions Q,Q0,Q1 are as defined in (8)–(10).

estimate C̄ig when Sg = 0, experiments that include a 0% saturation require a slightly
different approach. We explain these differences in Appendix B.

In the interest of brevity, we introduce shorthand notation and high-level regularity
conditions that apply to all four of our sample analogue estimators. These take the form

ϑ̂ ≡

(
G∑

g=1

Ng∑
i=1

Ẑ igX
′
ig

)−1(
G∑

g=1

Ng∑
i=1

Ẑ igYig

)
, Ẑ ig ≡ R(Ĉig, Ng)

+W ig (15)

where Yig is the outcome variable from Assumption 3, and M+ denotes the Moore-Penrose
inverse of a square matrix M. Table 1 gives the definitions ofX ig,R, andW ig corresponding
to each part of Theorem 2. The “estimated” instrument Ẑ ig is a stand-in for the unobserved
“true” instrument Z ig ≡ R(C̄ig, Ng)

−1W ig. While R(C̄ig, Ng) is invertible under Assump-
tion 7, R(Ĉig, Ng) may not be so, since Ĉig could fall outside the support set of C̄ig or even
equal zero. For this reason we define Ẑ ig using the Moore-Penrose inverse, which always
exists and coincides with the ordinary matrix inverse when R(Ĉig, Ng) is indeed invertible.

AsG grows, so does the number of unknown values C̄ig that we must estimate to construct
the instrument vectors Ẑ ig.12 For this reason, we consider an asymptotic sequence in which
the minimum group size n grows along with the number of groups G. Under appropriate
assumptions, this implies that the limit behavior of ϑ̂ coincides with that of the infeasible

12While C̄ig can vary across individuals in the same group, it takes on at most two distinct values for fixed
g. If a group contains T total individuals, of whom c are compliers and n never-takers, then the share of
compliers among a given person’s neighbors is either (c− 1)/(T − 1) if she is a complier or c/(T − 1) if she
is a never-taker. Thus, the number of incidental parameters is 2G.
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estimator that uses the true instrument vector Z ig instead of its estimate Ẑ ig.
Like Baird et al. (2018), we take an infinite population approach to inference, assuming

that the researcher observes a random sample of size G from a population of groups. Unlike
Baird et al. (2018), we allow these groups to differ in size. Upon drawing a group g from the
population, we observe the group-level random variables (Sg, Ng) along with the individual-
level random variables (Yig, Dig, Zig) for each member of the group: 1 ≤ i ≤ Ng. We further
assume that observations are identically distributed, but not independent, within groups.13

Groups are only observed as a unit: either everyone from the group appears in the
sample or no one does. For this reason, some care is needed in defining random variables to
represent our sampling procedure and expectations to represent the population averages that
define our causal effects of interest. The expectations in Theorems 2–3 are averages that give
equal weight to each individual in the population, or sub-population if we condition on Cig.
Analogously, the estimator in (15) is an average that gives equal weight to each individual in
the sample. Both of these are precisely what we want, as our goal is to identify and estimate
average causal effects for individuals. Under the sampling assumptions introduced in the
preceding paragraph, (Yig, Dig, Zig, D̄ig) are random variables that are drawn by choosing a
group uniformly at random from the population of groups, and then a single person from the
chosen group. If all groups were the same size, this would be equivalent to choosing a person
uniformly at random from the population of individuals. When groups vary in size, however,
the equivalence no longer holds.14 This creates the possibility for ambiguity when taking
the expectation of an individual-level random variable, such as Yig, without conditioning
on group size: is the expectation intended to give equal weight to groups or individuals?
Fortunately this is only a question of defining appropriate notation. Our group sampling
procedure unambiguously gives equal weight to each individual in the population because we
observe not isolated individuals but whole groups. While small groups are just as likely to
be drawn as large groups, large groups make a greater contribution to the sample averages
from (15) because they contain more people.15 The question is merely how to represent this

13The assumption that observations are identically distributed within group amounts to stipulating that
the indices 1 ≤ i ≤ Ng are assigned at random.

14Consider a population of 100 groups, half of which have 5 members and the rest of which have 15
members so that 250 of the 1000 people in the population belong to a small group and the remaining 750
belong to a large group. Suppose first that we choose a single group at random and then a single person
within the selected group. Then someone from a small group has probability 1/500 of being selected while
someone from a large group has probability 1/1500 of being selected.

15Continuing from the example in the preceding footnote: suppose that we randomly sample 10 groups
and observe everyone in the selected group. Then, on average, our sample will contain 5 small groups and
5 large groups. While the total sample size is random, we will on average observe 100 people, of whom 25
come from small groups and the rest from large groups, matching the shares of each kind of individual in
the population.
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mathematically. Let ρg ≡ Ng/E(Ng) denote the relative size of group g. We write E[Yig] to
denote the average that gives equal weight to groups—choosing one person at random from
a randomly-chosen group—and E[ρgYig] to denote the average that gives equal weight to
individuals—observing an entire group chosen at random. It is the latter expectation that
appears in our asymptotic results below, as it denotes the population equivalent of the double
sums from (15). While this is a slight abuse of notation, expectations from section 3 above
that involve individual-level random variables but do not condition on group size should be
interpreted as (implicitly) weighting by relative group size. Using the notation and sampling
scheme defined above, we now state high-level sufficient conditions for the consistency of ϑ̂
from Equation 15.

Theorem 4. Let ρg ≡ Ng/E(Ng) and suppose that

(i) we observe a random sample of G groups, where observations within a given group are
identically distributed although not necessarily independent,

(ii) Yig =X
′
igϑ+ Uig for 1 ≤ g ≤ G, 1 ≤ i ≤ Ng,

(iii) E (ρgZ igUig) = 0 and E
(
ρgZ igX

′
ig

)
= I,

(iv) E
[
ρ2g||Z igX

′
ig||2

]
= o(G),

(v) E
[
ρ2g||Z igUig||2

]
= o(G),

(vi) ||
∑G

g=1
1
Ng

∑Ng

i=1 ρg(Ẑ ig −Z ig)X
′
ig|| = oP(G), and

(vii) ||
∑G

g=1
1
Ng

∑Ng

i=1 ρg(Ẑ ig −Z ig)Uig|| = oP(G).

Then ϑ̂, defined in (15), is consistent for ϑ as G→ ∞.

Condition (i) of Theorem 4 simply restates our group sampling assumption. Conditions
(ii) and (iii) hold under the assumptions of Theorem 2, as shown in the proof of that result:
for each average effect ϑ from the theorem, we can define an appropriate error term Uig,
vector of regressorsX ig, and vector of instruments Z ig such that Yig =X ′

igϑ+Uig where Z ig

is an exogenous and relevant instrument. Moreover, for each part of Theorem 2, E(ρgZ igX
′
ig)

equals the identity matrix.16,17 Conditions (iv) and (v) of Theorem 4 would be implied by
requiring that the second moments of ρgZ igX

′
ig and ρgZ igUig exist and are bounded. We

16For effects that condition on Cig = c, e.g. those from parts (ii) and (iii) of Theorem 2, the appropriate
definition of ρg becomes NgE[1(Cig = c)]/E[Ng1(Cig = c)].

17Given that E(ρgZigX
′
ig) = I, we could have defined our estimator to be 1

N

∑G
g=1

∑Ng

i=1 ẐigYig rather
than ϑ̂. It is more convenient both for our asymptotic derivations and practical implementation, however,
to work with an IV estimator.
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choose to state these conditions in a slightly weaker form because the distribution of ρg
necessarily changes with G if we consider an asymptotic sequence in which the minimum
group size n increases with the number of groups, as we will assume below. Requiring the
relevant expectations to be o(G) in principle allows the variance of relative group size ρg to
grow along with the number of groups, provided that it does not grow too quickly. Conditions
(i)–(v) together are sufficient for the consistency of

ϑ̃ ≡

(
G∑

g=1

Ng∑
i=1

Z igX
′
ig

)−1(
G∑

g=1

Ng∑
i=1

Z igYig

)
, (16)

an infeasible estimator that uses the true instrument vector Z ig instead of its estimate Ẑ ig.
The final two conditions of Theorem 4 assume that Ẑ ig is a sufficiently accurate estimator
of Z ig to ensure that ϑ̂ = ϑ̃ + oP(1). In the setting we consider here, this will require
a condition on how quickly the minimum group size n grows relative to G, as we discuss
in detail below. Strengthening conditions (v) and (vii) and adding one further assumption
implies that ϑ̂ is asymptotically normal.

Theorem 5. Suppose that

(i) Var
(

1
Ng

∑Ng

i=1 ρgZ igUig

)
→ Σ as G→ ∞,

(ii) E
[
ρ2+δ
g ||Z igUig||2+δ

]
= o(Gδ/2) for some δ > 0, and

(iii) ||
∑G

g=1
1
Ng

∑Ng

i=1 ρg(Ẑ ig −Z ig)Uig|| = oP(G
1/2).

Then, under the conditions of Theorem 4,
√
G(ϑ̂− ϑ) →d N(0,Σ).

Combined with the first four conditions of Theorem 4, (i) and (ii) from Theorem 5 are
sufficient for the asymptotic normality of ϑ̃, the infeasible estimator defined in (16). Condi-
tion (i) implies that the rate of convergence of ϑ̃ is G−1/2. Obtaining a rate of convergence
that depends on the total number of individuals rather than groups in the sample would re-
quire assumptions that are implausible in typical applications of the randomized saturation
design.18 Conditions (ii) and (iii) strengthen (v) and (vii), respectively, from Theorem 4: (ii)
is sufficient for the Lindeberg condition, which we use to establish a central limit theorem,
while (iii) ensures that the limit distribution of the feasible estimator ϑ̂ coincides with that
of the infeasible estimator ϑ̃.

18Obtaining the faster rate of convergence would require Var
(

1
Ng

∑Ng

i=1 ρgZigUig

)
→ 0 as G → ∞. Be-

cause we consider an asymptotic sequence in which the minimum group size grows with G, this is technically
possible. It would, however, require us to assume that both heterogeneity between groups and dependence
within groups to vanish in the limit.
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Conditions (vi)–(vii) of Theorem 4, along with condition (iii) of Theorem 5, require
the difference (Ẑ ig −Z ig) to be sufficiently small on average that the limiting behavior of ϑ̂
coincides with that of the infeasible estimator. We now provide low-level sufficient conditions
for this to obtain. By definition,

Ẑ ig −Z ig =
[
R(Ĉig, Ng)

+ −R(C̄ig, Ng)
−1
]
W ig. (17)

Accordingly, so long as R is a sufficiently well-behaved function, (Ẑ ig −Z ig) will be small if
|Ĉig − C̄ig| is. As shown in the following lemma, a sufficient condition for this difference to
vanish uniformly over (i, g) is for the minimum group size n to be large relative to logG.

Lemma 4. Suppose that 0 < s ≥ Sg and n ≤ Ng. Under Assumptions 1–2 and 4–6

max
1≤g≤G

(
max

1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣) = OP

(√
logG

n

)
as (n,G) → ∞.

The following regularity conditions are sufficient for R(Ĉig, Ng)
+−R(C̄ig, Ng)

−1 to inherit
the asymptotic behavior of (Ĉig − C̄ig).

Assumption 8 (Regularity Conditions for R).

(i) R(c̄, n) is well-defined and symmetric for all c̄ ∈ [c̄L/2, 1), n ≥ n where 0 < c̄L ≤ C̄ig;

(ii) inf
c̄≥c̄L/2, n≥n

σ (R(c̄, n)) > σ > 0, where σ(M) denotes the minimum eigenvalue of M;

(iii) ||R(c̄1, n)−R(c̄2, n)|| ≤ L
{
|c̄1 − c̄2|+O(n−1/2)

}
as n→ ∞ for some 0 < L <∞.

Parts (i) and (ii) of Assumption 8 require that R is well-defined and uniformly invertible
over a range of values for c̄ that includes the support of C̄ig and excludes zero. Part (iii) is
a variant of Lipschitz continuity that holds in the limit as n grows. These conditions are
mild: they amount to a slight strengthening of the rank condition from Assumption 7. In the
linear basis function example from (12) and (13), for instance, Assumption 8 holds whenever
C̄ig is bounded away from zero and Sg takes on at least two distinct values between zero and
one.19 More generally, provided that Assumption 7 holds, whenever C̄ig is bounded away
from zero and the basis functions f are well-behaved, we can always extend the definitions
of Q0,Q1 from (9)–(10) to ensure that Assumption 8 holds. See Appendix C for full details.
Under this assumption, we can derive sufficient conditions on the rates at which G and n

approach infinity to ensure that the difference between Ẑ ig and Z ig is negligible.
19See the discussion in section 3 immediately following (12) for details.
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Theorem 6. Suppose that E
[
ρ2g||W igX

′
ig||2

]
and E

[
ρ2g||W igUig||2

]
are both o(G). Then,

under condition (i) of Theorem 4 and the conditions of Lemma 4,

(i) logG/n→ 0 is sufficient for conditions (vi)–(vii) of Theorem 4.

(ii) G logG/n→ 0 is sufficient for condition (iii) of Theorem 5.

Taken together, Theorems 4–6 establish that ϑ̂ from (15) is consistent, and asymptotically
normal in the limit as G and n grow at an appropriate rate. In practical terms, our estimators
are appropriate for settings with many large groups such as the experiment of Crépon et al.
(2013). To implement them in practice, all that is required is to calculate the estimated
instrument Ẑ ig and then run the appropriate just-identified IV regression from Table 1 with
standard errors clustered by group.

5 Conclusion

In this paper we have proposed methods to identify and estimate direct and indirect causal
effects under one-sided non-compliance, using data from a randomized saturation experiment.
Under appropriate assumptions, we show that the key source of unobserved heterogeneity is
the share of compliers within a given group. In a setting with many large groups, this quantity
can be estimated and yields a simple IV estimator that is consistent and asymptotically
normal in the limit as group size and the number of groups grow. A possible extension of
the methods described above would be to consider settings with two-sided non-compliance.
In this case our identification approach would condition on the share of always-takers in
addition to the share of compliers. Another interesting extension would be to consider
relaxing Assumption 5 to allow some dependence of individuals’ take-up decisions on the
offers of their peers. Work currently in progress explores this possibility.

A Proofs
The following lemma, taken from Constantinou and Dawid (2017) summarizes several useful proper-
ties of conditional independence that we use in our proofs below. The names attached to properties
(i) and (iii)–(v) are taken from Pearl (1988). For the purposes of this document, we call the second
property “redundancy.”

Lemma A.1 (Axioms of Conditional Independence). Let X,Y, Z,W be random vectors defined on
a common probability space, and let h be a measurable function. Then:

(i) (Symmetry): X |= Y |Z =⇒ Y |= X|Z.

(ii) (Redundancy): X |= Y |Y .
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(iii) (Decomposition): X |= Y |Z and W = h(Y ) =⇒ X |=W |Z.

(iv) (Weak Union): X |= Y |Z and W = h(Y ) =⇒ X |= Y |(W,Z).

(v) (Contraction): X |= Y |Z and X |=W |(Y, Z) =⇒ X |= (Y,W )|Z.

For simplicity, our proofs below freely use the “Symmetry” property without comment, although
we reference the other properties when used. We also rely on the following corollary of Lemma A.1.

Corollary A.1. X |= Y |Z implies (X,Z) |= Y |Z.

Proof of Lemma 1. Applying Corollary A.1 and the Decomposition property to Assumption 6(ii)
yields Zg |= (Cg, C̄ig)|(Ng, Sg). By the definition of conditional independence, it follows that the
distribution of Zg|(Ng, Sg,Cg, C̄ig) is the same as that of Zg|(Ng, Sg):

P(Zg = z|Ng = n, Sg = s,Cg, C̄ig) = P(Zg = z|Ng = n, Sg = s). (A.1)

Now, define the shorthand A ≡
{
Ng = n, Sg = s,Cg = c, C̄ig = c̄

}
and let C(i) be the indices of

all non-zero components of c, excluding the ith component, i.e. C(i) ≡ {j 6= i : cj = 1}. By the
definition of D̄ig, the event

{
D̄ig = d

}
is equivalent to

{∑
j 6=iCjgZjg = d(Ng − 1)

}
. Consequently,

P(D̄ig = d|A,Zig) = P

∑
j 6=i

CjgZjg

 = d(n− 1)

∣∣∣∣∣∣A,Zig

 = P

 ∑
j∈C(i)

Zjg

 = d(n− 1)

∣∣∣∣∣∣A,Zig


where the first equality uses the fact that A implies Ng = n, and the second uses the fact that
A implies Cg = c, so we know precisely which of the indicators Cjg equal zero and which equal
one. Under Assumption 2, (A.1) implies that Zg|A ∼ iid Bernoulli(s). By our definition of C(i)
it follows that, conditional on A, the subvector of Zg that corresponds to C(i) constitutes an iid
sequence of c̄(n − 1) Bernoulli(s) random variables, each of which is independent of Zig. Hence,
conditional on (A,Zig), we see that

∑
j∈C(i) Zjg ∼ Binomial

(
c̄(n− 1), s

)
.

Proof of Lemma 2. Under (5), Yig = X′
igBig where Big = (αig, βig, γig, δig)

′. Now, let Rig ≡{
Sg, Zig, Ng, C̄ig, Cig,Big

}
and Λig ≡ diag

{
1, Cig, C̄ig, CigC̄ig

}
. From Lemma 1 we see thatE[D̄ig|R] =

C̄igSg. Since Dig = CigZig under one-sided non-compliance and IOR, it follows that E[X′
ig|Rig] =

Z ′
igΛig. Hence,

E [Z igYig] = E
[
Z igE(X

′
ig|Rig)Big

]
= E

[(
Z igZ ′

ig

)
(ΛigBig)

]
E
[
Z igX

′
ig

]
= E

[
Z igE

(
X′

ig|Rig

)]
= E

[(
Z igZ ′

ig

)
Λig

]
since Z ig and Big are Rig–measurable. Now, applying Decomposition and Corollary A.1 to part
(ii) of Assumption 6 gives Zig |= (Cig, C̄ig,Big)|(Sg, Ng). Under Bernoulli offers, however, this con-
ditional distribution does not involve Ng, so we obtain

(Cig, C̄ig,Big) |= Zig|Sg. (A.2)

Similarly, applying Decomposition to part (ii) of Corollary A.1, we see that (Cig, C̄ig,Big) |= Sg.
Combining this with (A.2), the Contraction axiom yields (Cig, C̄ig,Big) |= (Zig, Sg), implying that
(Z igZ ′

ig) is independent of both Λig and (ΛigBig). Accordingly,

ϑIV =
{
E
[(
Z igZ ′

ig

)
Λig

]}−1
E
[(
Z igZ ′

ig

)
(ΛigBig)

]
= E [Λig]

−1
E [ΛigBig] .
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By the definitions of ϑIV, Λig and Big it follows that

αIV = E [αig] , βIV =
E [Cigβig]

E [Cig]
, γIV =

E
[
C̄igγig

]
E
[
C̄ig

] , δIV =
E
[
CigC̄igδig

]
E
[
CigC̄ig

] .

By iterated expectations over Cig, we obtain βIV = E [βig|Cig = 1] while

γIV =
E
[
C̄igγig

]
E
[
C̄ig

] =
Cov(C̄ig, γig) +E(C̄ig)E(γig)

E(C̄ig)
= E[γig] +

Cov(C̄ig, γig)

E(C̄ig)
.

Similarly, again taking iterated expectations over Cig,

δIV =
E
[
C̄igδig|C̄ig = 1

]
E
[
C̄ig|Cig = 1

] = E [γig] +
Cov(C̄ig, δig|Cig = 1)

E(C̄ig|Cig = 1)
.

Proof of Theorem 1. Assumption 6(i) implies (Cg,Bg) |= Sg|Ng by Weak Union and Decompo-
sition. Combining this with Assumption 6(ii) gives

(Zg, Sg) |= (Bg,Cg)|Ng (A.3)

by Contraction. Now let C−ig denote the subvector of Cg that excludes element i. Applying
Decomposition, Corollary A.1, and Weak Union to (A.3),

(Sg,Zg) |= (Big, Cig,C−ig, Ng)|(Ng, C̄ig). (A.4)

because C̄ig is a function of (Cg, Ng). By Lemma 1,

D̄ig |= C−ig|(Ng, C̄ig, Sg, Zig). (A.5)

Applying Decomposition to (A.4) gives C−ig |= (Sg, Zig)|(Ng, C̄ig). Combining this with (A.5),

(Sg, Zig, D̄ig) |= C−ig|(Ng, C̄ig) (A.6)

by Contraction. Now, applying Weak Union, Decomposition, and Corollary A.1 to (A.4),

(Sg, Zig, D̄ig) |= (Big, Cig)|(C−ig, C̄ig, Ng). (A.7)

since D̄ig is a function of (Zg,C−ig, Ng). Finally, applying Contraction to (A.6) and (A.7),

(Sg, Zig, D̄ig) |= (C−ig, Big, Cig)|(C̄ig, Ng)

and the result follows by a final application of Decomposition.

Proof of Lemma 3. Define the shorthand U ≡ Q(c̄, n), A ≡ Q0(c̄, n), and B = Q1(c̄, n) so that

U =

[
A+B B
B B

]
.

Using this notation, we are asked to show that U is invertible if and only if A and B are both
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invertible, in which case U−1 = V where

V ≡
[
A−1 −A−1

−A−1 A−1 +B−1

]
.

The “if” direction follows by direct calculation: V U = UV = I. For the “only if” direction, suppose
that U is invertible. Partitioning U−1 into blocks (C,D,E, F ) conformably with the partition of
U , we have

UU−1 =

[
A+B B
B B

] [
C D
E F

]
=

[
I 0
0 I

]
=

[
C D
E F

] [
A+B B
B B

]
= U−1U.

We begin by showing that A is invertible. Consider the product UU−1. Multiplying the first
row of U by the first column of U−1 gives the equation AC + B(C + E) = I; multiplying the
second row of U by the first column of U−1 gives B(C + E) = 0. Combining these, AC = Im.
Now consider the product U−1U . Multiplying the first row of U−1 by the first column of U gives
CA+(C+D)B = I; multiplying the first row of U−1 by the second column of U gives (C+D)B = 0.
Combining these, CA = I. Since AC = CA = I, we have shown that A is invertible with A−1 = C.

We next show that D = E = −C. Consider again the product UU−1. Multiplying the first row
of U by the second column of U−1 gives AD +B(D + F ) = 0; multiplying the second row of U by
the second column of U−1 gives B(D+F ) = I. Combining these, AD = −I and because A−1 = C
we can solve this equation to yield D = −C. Now consider U−1U . Multiplying the second row of
U−1 by the first column of U gives EA+ (E +F )B = 0; multiplying the second row of U−1 by the
second column of U gives (E + F )B = I. Combining these, EA = −I and solving for E, we have
E = −C since A−1 = C.

Finally we show that B is invertible. Multiplying the second row of U by the second column of
U−1 gives B(D + F ) = I, but since D = −C this becomes B(F − C) = I Multiplying the second
row of U−1 by the first column of U gives (E + F )B + EA = 0 but because E = −C = A−1 this
becomes (F − C)B = I. Thus, B(F − C) = (F − C)B = I so we have shown that B is invertible
with B−1 = F − C.

Proof of Theorem 2. For each part, it suffices to find an appropriate outcome variable Ỹig, re-
gressor vector X̃ig, and instrument set Z̃ ig such that we can write Ỹig = X̃′

igϑ + Uig where ϑ is
the parameter of interest, E[Z̃ igUig] = 0, and E[Z̃ igX̃

′
ig] is invertible. Note that (X̃ig, Ỹig, Z̃ ig)

are placeholders for quantities that differ in each part of the proof: for part (i) they represent
(Xig, Yig,ZW

ig ) while for part (ii) they stand for
(
Digf(D̄ig), DigYig,Z1

ig

)
, for example. The defini-

tions of Uig and ϑ are also specific to each part of the proof.

Part (i) By (2) we can write Ỹig = X̃′
igϑ + Uig where ϑ′ ≡

[
E(θ′ig) E(ψ′

ig − ϑ′
ig|Cig = 1)

]
,

Ỹig ≡ Yig, X̃ig ≡ Xig, and Uig ≡ X′
ig(Big − ϑ). Under IOR Dig = CigZig. Hence, defining

Mig ≡ diag {1, Cig} ⊗ IK ,

Xig =

([
1 0
0 Cig

] [
1
Zig

])
⊗
[
IKf(D̄ig)

]
=

([
1 0
0 Cig

]
⊗ IK

)([
1
Zig

]
⊗ f(D̄ig)

)
= MigWig.

Since Mig is symmetric, Uig = W′
ig [Mig (Big − ϑ)]. Thus, taking Z̃

W

ig ≡ Z ig, we have

E[Z̃ igUig] = E

{
E

[
Z̃ igUig

∣∣∣ C̄ig, Ng

]}
= E

{
Q(C̄ig, Ng)

−1
E
[
WigW

′
igMig (Big − ϑ)

∣∣ C̄ig, Ng

]}
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by iterated expectations. By assumption (Zig, D̄ig) |= (Cig,Big)|(C̄ig, Ng). Hence,

E
[
WigW

′
igMig(Big − ϑ)

∣∣ C̄ig, Ng

]
= E

[
WigW

′
ig

∣∣ C̄ig, Ng

]
E
[
Mig(Big − ϑ)| C̄ig, Ng

]
by Decomposition, since WigW

′
ig is a measurable function of (Zig, D̄ig) and Mig(Big − ϑ) is a

measurable function of (Cig,Big). Substituting into the expression for E[Z̃ igUig],

E

[
Z̃ igUig

]
= E

{
E
[
Mig(Big − ϑ)| C̄ig, Ng

]}
= E [Mig (Big − ϑ)]

by iterated expectations, since Q(C̄ig, Ng)
−1 = E[WigW

′
ig|C̄ig, Ng]

−1. Now, substituting the defi-
nitions of Mig, Big, and ϑ,

E [Mig (Big − ϑ)] = E

[
(θig −E {θig})

Cig

({
ψig − θig

}
−E

{
ψig − θig

∣∣Cig = 1
})] = 0

since E
[
Cig

(
ψig − θig

)]
= E(Cig)E

(
ψig − θig

∣∣Cig = 1
)
. Therefore E[Z̃ igUig] = 0. Similarly,

E

[
Z̃ igX̃

′
ig

]
= E

{
Q(C̄ig, Ng)

−1
E
[
WigW

′
igMig|C̄ig, Ng

]}
= E

{
Q(C̄ig, Ng)

−1
E
[
WigW

′
ig|C̄ig, Ng

]
E
[
Mig|C̄ig, Ng

]}
= E [Mig] .

Since [Mig] is invertible if and only if E(Cig) 6= 0, it follows that E[Z̃ igX̃
′
ig] is invertible by

Assumption 7.

Part (ii) Since D2
ig = Dig and Dig(1 − Dig) = 0, multiplying both sides of (2) by Dig and

simplifying gives DigYig = Digf(D̄ig)ψig. Thus Ỹig = X̃′
igϑ + Uig where ϑ ≡ E(ψig|Cig = 1),

Ỹ ≡ DigYig, X̃ig ≡ Digf(D̄ig), and Uig ≡
[
Digf(D̄ig)

]′
(ψig − ϑ). The remainder of the argument

is similar to that of part (i). Taking Z̃ ig ≡ Z1
ig and substituting Dig = ZigCig gives

E[Z̃ igUig] = E
{
Q1(C̄ig, Ng)

−1
E
[
f(D̄ig)f(D̄ig)

′Zig|C̄ig, Ng

]
E
[
Cig(ψig − ϑ)

∣∣ C̄ig, Ng

]}
= E

{
E
[
Cig(ψig − ϑ)|C̄ig, Ng

]}
= E

[
Cig(ψig − ϑ)

]
.

Since E[Cigψig] = E(Cig)E(ψig|Cig = 1) = E(Cigϑ), we obtain E(Z̃ igUig) = 0. Similarly,

E

[
Z̃ igX̃

′
ig

]
= E

{
Q1(C̄ig, Ng)

−1
E
[
f(D̄ig)f(D̄ig)

′ZigCig|C̄ig, Ng

]}
= E

{
Q1(C̄ig, Ng)

−1
E
[
f(D̄ig)f(D̄ig)

′Zig|C̄ig, Ng

]
E
[
Cig|C̄ig, Ng

]}
= E(Cig)IK .

Hence, E[Z̃ igX̃ig]
′ is invertible by Assumption 7.

Part (iii) Since (1 − Dig)
2 = (1 − Dig) and Dig(1 − Dig) = 0, multiplying both sides of (2)

by Zig(1 − Dig) and simplifying gives Zig(1 − Dig)Yig = Zig(1 − Dig)f(D̄ig)θig. Thus we have
Ỹig = X̃′

igϑ+ Uig where ϑ ≡ E(θig|Cig = 0), Ỹig ≡ Zig(1−Dig)Yig, X̃ig ≡ Zig(1−Dig)f(D̄ig), and
Uig ≡

[
Zig(1−Dig)f(D̄ig)

]′
(θig −ϑ). The remainder of the argument is similar to that of part (i).
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Taking Z̃ ig ≡ Z1
ig and substituting Zig(1−Dig) = Zig(1− Cig) gives

E[Z̃igUig] = E
{
Q1(C̄ig, Ng)

−1
E
[
f(D̄ig)f(D̄ig)

′Zig|C̄ig, Ng

]
E [(1− Cig)(θig − ϑ)| C̄ig, Ng

]}
= E

{
E
[
(1− Cig)(θig − ϑ)|C̄ig, Ng

]}
= E [(1− Cig)(θig − ϑ)] .

Since E[(1 − Cig)θig] = E(1 − Cig)E(θig|Cig = 1) = E[(1 − Cig)ϑ], we obtain E(Z̃ igUig) = 0.
Similarly,

E

[
Z̃ igX̃

′
ig

]
= E

{
Q1(C̄ig, Ng)

−1
E
[
f(D̄ig)f(D̄ig)

′Zig(1− Cig)|C̄ig, Ng

]}
= E

{
Q1(C̄ig, Ng)

−1
E
[
f(D̄ig)f(D̄ig)

′Zig|C̄ig, Ng

]
E
[
(1− Cig)|C̄ig, Ng

]}
= E(1− Cig)IK .

It follows that E[Z̃ igX̃
′
ig] is invertible by Assumption 7.

Part (iv) Under one-sided non-compliance and IOR, (1 − Zig)(1 − Dig) = (1 − Zig). Hence,
multiplying both sides of (2) by (1− Zig), we obtain (1− Zig)Yig = (1− Zig)f(D̄ig)

′θig, using the
fact that Zig(1−Zig) = 0. Thus we can write Ỹig = X̃′

igϑ+Uig where ϑ ≡ E(θig), Ỹig ≡ (1−Zig)Yig,
X̃ig ≡ (1 − Zig)f(D̄ig), and Uig ≡ (1 − Zig)f(D̄ig)

′(θig − ϑ). The remainder of the argument is
similar to that of part (i). Taking Z̃ ig ≡ Z0

ig, we obtain

E[Z̃ igUig] = E
{
Q0(C̄ig, Ng)

−1
E
[
f(D̄ig)f(D̄ig)

′(1− Zig)|C̄ig, Ng

]
E [θig − ϑ| C̄ig, Ng

]}
= E

{
E
[
θig −E(θig)|C̄ig, Ng

]}
= 0

and E
[
Z̃ igX̃

′
ig

]
= E

{
Q0(C̄ig, Ng)

−1
E
[
f(D̄ig)f(D̄ig)

′(1− Zig)|C̄ig, Ng

]}
= IK .

Lemma A.2. Under Assumptions 2 and 6, (Sg, Zig) |= (Cig, C̄ig, Ng,Big).

Proof of Lemma A.2. By Assumption 2 Zig |= Ng|Sg and by Assumption 6 (ii) and Decomposi-
tion Zig |= (Cig,Big)|(Sg, Ng). Combining these by Contraction yields

Zig |= (Cg,Big, Ng)|Sg. (A.8)

Now, by Assumption 6 (i) we have Sg |= (Cg,Big, Ng). Combining this with (A.8) by a second
application of Contraction gives (Zig, Sg) |= (Cg,Big, Ng). The result follows by a final application
of Decomposition.

Proof of Theorem 3. Assumptions 1–6 imply that (Zig, D̄ig) |= (Big, Cig)|(C̄ig, Ng) by Theorem 1.
Hence Assumptions 1–7 are sufficient for the conclusions of Theorem 2 to hold. Now, by Lemma 1,
Assumptions 1–2 and 4–6 imply that the conditional distribution of D̄ig|(C̄ig, Ng, Zig) is known.
Moreover, by Lemma A.2, Zig |= (C̄ig, Ng) so the distribution of Z ig|(C̄ig, Ng) is likewise known. It
follows that Q,Q0 and Q1 are known functions of (C̄ig, Ng). Since Ng is observed, knowledge of
C̄ig is thus sufficient to identify the quantities

E(θig), E(ψig − θig|Cig = 1), E(ψig|Cig = 1), E(θig|Cig = 0)

by the relevant parts of Theorem 2. Now, by iterated expectations,

E(θig|Cig = 1) = E(θig|Cig = 0) +
1

E(Cig)
[E(θig)−E(θig|Cig = 0)] .
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Since E(Cig) = E(Dig|Zig = 1), it follows that E(θig|Cig = 1) is identified. Under IOR and
one-sided non-compliance {Dig = 1} = {Cig = 1, Zig = 1}, and applying Weak Union and Decom-
position to Lemma A.2, we see that Zig |= Big|Cig. Thus,

E(Big|Dig = 1) = E(Big|Cig = 1, Zig = 1) = E(Big|Cig = 1).

The result follows since Yig(d, d̄) = f(d̄)′θig + df(d̄)′(ψig − θig) under Assumption 3.

Proof of Theorem 4. Substituting the model into the definition of ϑ̂ and ρg ≡ Ng/E(Ng),

ϑ̂− ϑ =

 G∑
g=1

Ng∑
i=1

Ẑ igX
′
ig

−1 G∑
g=1

Ng∑
i=1

Ẑ igUig


=

 1

G

G∑
g=1

Ag +
1

G

G∑
g=1

R(1)
g

−1 1

G

G∑
g=1

Pg +
1

G

G∑
g=1

R(2)
g


where we define

Ag ≡ 1

Ng

Ng∑
i=1

ρgẐ igX
′
ig R(1)

g ≡ 1

Ng

Ng∑
i=1

ρg(Ẑ ig −Z ig)X
′
ig

Pg ≡ 1

Ng

Ng∑
i=1

ρgẐ igU
′
ig R(2)

g ≡ 1

Ng

Ng∑
i=1

ρg(Ẑ ig −Z ig)Uig.

By assumption, both ||
∑G

g=1R
(1)
g || and ||

∑G
g=1R

(2)
g || are oP(G) and thus

ϑ̂− ϑ =

 1

G

G∑
g=1

Ag + oP(1)

−1 1

G

G∑
g=1

Pg + oP(1)


Now, since we observe a random sample of groups and Ag is a group-level random variable

E

 1

G

G∑
g=1

Ag

 = E(Ag) = E

 1

Ng

Ng∑
i=1

E
(
ρgZ igX

′
ig|Ng

) = E
[
E
(
ρgZ igX

′
ig|Ng

)]
= E(ρgZ igX

′
ig)

where the second equality uses iterated expectations and linearity, the third uses the assumption of
identical distribution within groups, and the the fourth uses iterated expectations a second time.
Now consider an arbitrary entry A

(j,k)
g of the matrix Ag and let ‖·‖F denote the Frobenius norm.

By the triangle and Cauchy-Schwarz inequalities, and using the assumption of identical distribution
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with group, we have

Var

 1

G

G∑
g=1

A(j,k)
g

 =
1

G
Var

(
A(j,k)

g

)
≤ 1

G
E
[
||Ag||2F

]
=

1

G
E

 1

N2
g

∥∥∥∥∥∥
Ng∑
i=1

ρgZ igX
′
ig

∥∥∥∥∥∥
2

F


≤ 1

G
E

 1

N2
g

 Ng∑
i=1

∥∥ρgZ igX
′
ig

∥∥
F

2
=

1

G
E

 1

N2
g

E

 ∑
i,j≤Ng

∥∥ρgZ igX
′
ig

∥∥
F

∥∥ρgZjgX
′
jg

∥∥
F

∣∣∣∣∣∣Ng


≤ 1

G
E

 1

N2
g

E

 ∑
i,j≤Ng

∥∥ρgZ igX
′
ig

∥∥2
F

∣∣∣∣∣∣Ng


=

1

G
E

[
E

(∥∥ρgZ igX
′
ig

∥∥2
F

∣∣∣Ng

)]
=

1

G
E

[
ρ2g
∥∥Z igX

′
ig

∥∥2
F

]
→ 0

since all finite-dimensional norms are equivalent and E
[
ρ2g

∥∥∥Z igX
′
ig

∥∥∥2
F

]
= o(G). Hence, by the L2

weak law of large numbers G−1
∑G

g=1Ag →p E(ρgZ igX
′
ig) = I. An analogous argument shows that

G−1
∑G

g=1Pg →p E(ρgZ igUig) = 0. The result follows by the continuous mapping theorem.

Proof of Theorem 5. Continuing the argument from the proof of Theorem 4, we have

√
G(ϑ̂− ϑ) = [I+ oP(1)]

−1

 1√
G

G∑
g=1

Pg +
1√
G

G∑
g=1

R(2)
g

 .

By assumption, ||
∑G

g=1R
(2)
g || = oP(G

1/2), and hence
√
G(ϑ̂ − ϑ) = 1√

G

∑G
g=1Pg + oP(1). Thus,

it suffices to apply the Lindeberg-Feller central limit theorem to Pg/
√
G. Because we observe a

random sample of groups, Var(
∑G

g=1Pg/
√
G) = Var(Pg) which by assumption converges to Σ. All

that remains is to verify the Lindeberg condition, namely

E

[
||Pg||21

{
||Pg|| > ε

√
G
}]

→ 0

for any ε > 0. A sufficient condition for this to hold is G−δ/2
E
[
||Pg||2+δ

]
→ 0 for some δ > 0.

By an argument similar to that used to establish E
[
||Ag||2F

]
≤ E

[
ρ2g||Z igX

′
ig||2F

]
in the proof of

Theorem 4, we likewise have

G−δ/2
E

[
||Pg||2+δ

]
≤ G−δ/2

E

[
ρ2+δ
g ||Z igX

′
ig||2+δ

]
= o(1)

so the result follows.

Lemma A.3. Let Z̄g ≡
∑Ng

j=1 Zjg/Ng. Under the conditions of Lemma 4,

P(Z̄g < s/2) ≤ exp
{
−ns2/2

}
.
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Proof of Lemma A.3. Conditional on (Ng = n, Sg = s), the treatment offers (Z1, . . . , ZNg) are a
collection of n iid Bernoulli(s) random variables by Assumption 2. Hence, by Hoeffding’s inequality

P
(
Z̄g < s/2|Ng = n, Sg = s

)
≤ exp

{
−2n(s− s/2)2

}
≤ exp

{
−ns2/2

}
where the second inequality follows since s ≤ s. Thus,

P(Z̄g < s/2) =
∑
n,s

P(Z̄g ≤ s/2|Ng = n, Sg = s)P(Ng = n, Sg = s) ≤ exp
{
−2ns2/4

}
by the law of total probability. The result follows since P(Z̄g < s/2) ≤ P(Zg ≤ s/2).

Lemma A.4. Let C̄g =
∑Ng

j=1Cjg/Ng and Ĉg ≡
∑Ng

j=1Djg/NgZ̄g, where Z̄g is as defined in
Lemma A.3. Under the conditions of Lemma 4 and for any t > 0,

P

(∣∣∣Ĉg − C̄g

∣∣∣ ≥ t
∣∣∣ Z̄g ≥ s/2

)
≤ 2 exp

{
−ns2t2/2

}
.

Proof of Lemma A.4. Let A ≡
{
Cg = c, Ng = n, C̄g = c̄, NgZ̄g = m,Sg = s

}
where m > 0.

Suppose first that c̄ 6= 0. In this case

P

(∣∣∣Ĉg − C̄g

∣∣∣ > t
∣∣∣A) = P

∣∣∣∣∣∣
n∑

j=1

cjZjg

m
− c̄

∣∣∣∣∣∣ > t

∣∣∣∣∣∣A
 = P

∣∣∣∣∣∣ 1nc̄
∑
j∈C

Z∗
jg − c̄

∣∣∣∣∣∣ > t

∣∣∣∣∣∣A


where C ≡ {j : cj = 1} and Z∗
jg ≡ nc̄Zjg/m. Given A, the {Zjg}j∈C are a sequence of nc̄ draws

made without replacement from a population of m ones and (n−m) zeros. Thus

E(Z∗
jg) =

nc̄

m
P(Zjg = 1|A) =

nc̄

m
· m
n

= c̄.

Moreover, since Zjg ∈ {0, 1}, each of the Z∗
jg is bounded between 0 and nc̄/m. While these random

variables are identically distributed, they are not independent—like the Zjg from which they are
constructed,

{
Z∗
jg

}
j∈C

are draws made without replacement from a finite population. Under this
form of dependence, however, Hoeffding’s Inequality continues to apply (Hoeffding, 1963, p. 28)
and hence

P

(∣∣∣Ĉg − C̄g

∣∣∣ > t
∣∣∣A) ≤ 2 exp

{
−2t2m2

nc̄

}
≤ 2 exp

{
−2n

(m
n

)2
t2
}

where the second inequality follows because 0 < c̄ ≤ 1. If c̄ = 0, we have

P

(∣∣∣Ĉg − C̄g

∣∣∣ > t
∣∣∣A) = P(|0− 0| > t|A) = 0 ≤ 2 exp

{
−2n

(m
n

)2
t2
}

so this inequality holds for any c̄. Applying the law of total probability as in the proof of Lemma A.3,
we see that

P

(∣∣∣Ĉg − C̄g

∣∣∣ > t
∣∣∣Ng = n,NgZ̄g = m

)
≤ 2 exp

{
−2n

(m
n

)2
t2
}

32



and thus

P

(∣∣∣Ĉg − C̄g

∣∣∣ ≥ t
∣∣∣ Z̄g ≥ s/2

)
=

∑
{
(m,n) : m

n
≥s/2

}P
(∣∣∣Ĉg − C̄g

∣∣∣ > t
∣∣∣Ng = n,NgZ̄g = m

)
×P(NgZ̄g = m,Ng = n|Z̄g ≥ s/2)

≤
∑

{
(m,n) : m

n
≥s/2

} 2 exp
{
−2n

(m
n

)2
t2
}
P(NgZ̄g = m,Ng = n|Z̄g ≥ s/2)

≤
∑

{
(m,n) : m

n
≥s/2

} 2 exp
{
−ns2t2/2

}
P(NgZ̄g = m,Ng = n|Z̄g ≥ s/2)

= exp
{
−ns2t2/2

}
by a second application of the law of total probability, since n ≤ Ng.

Lemma A.5. Suppose that sn > 2. Then, under the conditions of Lemma 4,

P

(
max

1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣ > t

∣∣∣∣ Z̄g ≥ s/2

)
≤ 2 exp

{
−ns2h(sn, t)2/2

}
where we define

h(x, t) ≡
(
x− 2

x

)2

t−

[
1−

(
x− 2

x

)2
]

4

x− 2
.

Proof of Lemma A.5. If Z̄g > s/2 > 1/n, then NgZ̄g − Zig > 0 and NgZ̄g > 0. Hence,

Ĉig ≡ D̄ig

Z̄ig
=

NgD̄g −Dig

NgZ̄g − Zig
=

NgZ̄gĈg −Dig

NgZ̄g − Zig
=

(
NgZ̄g

NgZ̄g − Zig

)
Ĉg −

Dig

NgZ̄g − Zig
.

Similar manipulations give

C̄ig =

(
Ng

Ng − 1

)
C̄g −

Cig

Ng − 1

from which it follows that∣∣∣Ĉig − C̄ig

∣∣∣ ≤ ∣∣∣∣( NgZ̄g

NgZ̄g − Zig

)
Ĉg −

(
Ng

Ng − 1

)
C̄g

∣∣∣∣+ ∣∣∣∣ Cig

Ng − 1
− Dig

NgZ̄g − Zig

∣∣∣∣
by the triangle inequality. Using the fact that Zig, Dig, and Cig are binary along with n ≤ Ng and
Z̄g > s/2 > 1/n, tedious but straightforward algebra allows us to bound the right-hand side of the
preceding inequality from above, yielding

∣∣∣Ĉig − C̄ig

∣∣∣ ≤ ( sn

sn− 2

)2 ∣∣∣Ĉg − C̄g

∣∣∣+ [( sn

sn− 2

)2

+ 1

]
4

sn− 2
.

Since this upper bound for |Ĉig − C̄ig| does not depend on i, it follows that

max
1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣ ≤ ( sn

sn− 2

)2 ∣∣∣Ĉg − C̄g

∣∣∣+ [( sn

sn− 2

)2

+ 1

]
4

sn− 2
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provided that Z̄g > s/2 > 1/n. In other words, so long as sn > 2 we have

{
Z̄g ≥ s/2

}
∩
{

max
1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣ > t

}
⊆
{
Z̄g > s/2

}
∩
{∣∣∣Ĉg − C̄g

∣∣∣ > h(sn, t)
}
.

Therefore, by the monotonicity of probability

P

(
max

1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣ > t

∣∣∣∣ Z̄g ≥ s/2

)
≤ P

(∣∣∣Ĉg − C̄g

∣∣∣ > h(sn, t)
∣∣∣ Z̄g ≥ s/2

)
and the result follows by Lemma A.4.

Proof of Lemma 4. By the law of total probability, Lemma A.4, and Lemma A.5

P

(
max

1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣ > t

)
≤ P

(
max

1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣ > t

∣∣∣∣ Z̄g ≥ s/2

)
+P(Z̄g < s/2)

≤ 2 exp
{
−ns2h(sn, t)2/2

}
+ exp

{
−ns2/2

}
where h(·, ·) is as defined in Lemma A.5. Expanding and simplifying, we see that

h(sn, t)2 ≥
(
sn− 2

sn

)4

t2 − 16t

sn− 2
≡ h∗(sn, t).

Now, for any t ≥ 1 we have P
(
max1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣ > t
)

since both Ĉig and C̄ig are between
zero and one. Since h∗(sn, t) < 1 for any t < 1, it follows that

P

(
max

1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣ > t

)
≤ 2 exp

{
−ns2h(sn, t)2/2

}
+ exp

{
−ns2/2

}
≤ 2 exp

{
−ns2h∗(sn, t)/2

}
+ exp

{
−ns2/2

}
≤ 3 exp

{
−ns2h∗(sn, t)/2

}
Applying the union bound we obtain

P

(
max

1≤g≤G
max

1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣ > t

)
= P

 G⋃
g=1

{
max

1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣ > t

}
≤

G∑
g=1

P

(
max

1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣ > t

)

≤
G∑

g=1

3 exp
{
−ns2h∗(sn, t)/2

}
= 3G exp

{
−ns2h∗(sn, t)/2

}
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and accordingly we have

P


max

1≤g≤G
max

1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣√
logG

n

> M

 ≤ 3G exp

{
−ns2

2

[(
sn− 2

sn

)4 logG

n
M2 − 16

sn− 2

√
logG

n
M

]}

= 3G exp

{
logG

[
1− s2

2

(
sn− 2

sn

)4

M2 − 16

sn− 2

√
1

n logG

]}
.

The expression on the right-hand side converges to 3 exp
{
logG

[
1− s2M2/2

]}
as (n,G) → ∞ and

hence can be made arbitrarily small by choosing a sufficiently large value of M .

Proof of Theorem 6. We provide the argument for condition (vii) of Theorem 4 and (iii) of
Theorem 5 only. For (vi) from Theorem 4, simply replace Uig with Xig in the following derivations.
By (17) and the triangle inequality∥∥∥∥∥∥

G∑
g=1

1

Ng

Ng∑
i=1

ρg(Ẑ ig −Z ig)Uig

∥∥∥∥∥∥ ≤ ∆G

 G∑
g=1

1

Ng

Ng∑
i=1

||ρgW igUig||

 (A.9)

where we define the shorthand

∆G ≡ max
1≤g≤G

(
max

1≤i≤Ng

∥∥∥R(Ĉig, Ng)
+ −R(C̄ig, Ng)

−1
∥∥∥) .

Consider the second factor on the RHS of (A.9). By an argument similar to that used in the proof
of Theorem 4,

1

G

G∑
g=1

 1

Ng

Ng∑
i=1

||ρgW igUig||

→p E [||ρW igUig||] < ∞

so that
∑G

g=1
1
Ng

∑Ng

i=1||ρgW igUig|| = OP(G). Now, define the event 1̂G as

1̂G ≡ 1

{
min

1≤g≤G

(
min

1≤i≤Ng

Ĉig

)
≥ c̄L

2

}
.

By assumption R(C̄ig, Nig) is invertible, and conditional on Ĉig ≥ c̄L/2 it follows that R(Ĉig, Ng)
is likewise invertible. Hence, if 1̂G = 1 we can write∥∥∥R(Ĉig, Ng)

−1 −R(C̄ig, Ng)
−1
∥∥∥ =

∥∥∥R(Ĉig, Ng)
−1
[
R(Ĉig, Ng)−R(C̄ig, Ng)

]
R(C̄ig, Ng)

−1
∥∥∥

≤
∥∥∥R(Ĉig, Ng)

−1
∥∥∥∥∥∥R(Ĉig, Ng)−R(C̄ig, Ng)

∥∥∥∥∥R(C̄ig, Ng)
−1
∥∥ .

Let ||M||2 denote the spectral norm of a matrix M, i.e. its largest singular value. Since R(C̄ig, Ng)
is square, symmetric, and positive definite we have ||R(C̄ig, Ng)

−1||2 ≤ 1/σ < ∞. Similarly, if
1̂G = 1, then ||R(Ĉig, Ng)

−1||2 ≤ 1/σ < ∞. Because all finite-dimensional norms are equivalent, it
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follows that

1̂G∆G ≤ K max
1≤g≤G

(
max

1≤i≤Ng

∥∥∥R(Ĉig, Ng)−R(C̄ig, Ng)
∥∥∥) ≤ K

{
max

1≤g≤G

(
max

1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣)+O(n−1/2)

}
where 0 < K < ∞ denotes a generic, unspecified constant. Applying Lemma 4 we see that
1̂G∆G = OP

(√
logG/n

)
as (n,G) → ∞. Thus, by (A.9),

1̂G

∥∥∥∥∥∥
G∑

g=1

1

Ng

Ng∑
i=1

ρg(Ẑ ig −Z ig)Uig

∥∥∥∥∥∥ = OP

(√
logG

n

)
OP(G). (A.10)

If logG/n → 0 as (n,G) → ∞, then the rate on the RHS of (A.10) becomes oP(G). If G logG/n →
0, it becomes oP(G

1/2). Finally, since c̄L ≤ C̄ig, it follows that

P

(
1̂G 6= 1

)
≤ P

[
max

1≤g≤G

(
max

1≤i≤Ng

∣∣∣Ĉig − C̄ig

∣∣∣ ≥ c̄L
2

)]
Hence, applying Lemma 4, logG/n → 0 implies 1̂G →p 1. The result follows.

B Experiments with a 0% Saturation
Some randomized saturation designs, including the experiment of Crépon et al. (2013), include a
zero percent saturation, also known as a “pure control” condition. Under one-sided non-compliance
Sg = 0 implies Zig = Dig = D̄ig = 0 for all 1 ≤ i ≤ Ng. Accordingly, we cannot estimate the share
of compliers Ĉig from (14) for groups assigned a saturation of zero. The easiest solution to this
problem is simply to drop observations for any zero saturation groups. Under Assumptions 1–2
and 6 this has no effect on our identification or large-sample results provided that we replace Q,Q0

and Q1 with expectations that condition on Sg > 0, namely

Q̃(c̄, n) ≡ E
[
WigW

′
ig|C̄ig = c̄, Ng = n, Sg > 0

]
Q̃0(c̄, n) ≡ E

[
(1− Zig)f(D̄ig)f(D̄ig)

′|C̄ig = c̄, Ng = n, Sg > 0
]

Q̃1(c̄, n) ≡ E
[
Zigf(D̄ig)f(D̄ig)

′|C̄ig = c̄, Ng = n, Sg > 0
]
.

Zero percent saturation groups, however, are informative: they pin down the value of E[Yig(0, 0)]
and hence can be used to improve estimates of E [θig]. To exploit this information, we replace the
instrument vector from part (iv) of Theorem 2 with

Z̃
0

ig ≡
[
1 {Sg > 0} Q̃0(C̄ig, Ng)

−1f(D̄ig)
1 {Sg = 0}

]
.

Calculations similar to those in the proof of Theorem 2 establish that this is a valid and relevant
instrument. Because its dimension exceeds that of θig by one, this instrument vector provides
over-identifying information. As such, the just-identified IV moment condition from part (iv) of
Theorem 2 must be replaced with a linear GMM moment equation. Subject to this small change,
estimation and inference can proceed almost exactly as in section 4: we merely substitute Ĉig for
C̄ig in Q̃0 to yield a feasible GMM estimator, e.g. two-stage least squares. With minor notational
modifications, our large-sample results continue to apply.
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C Extending the Definition of Q

Technically, the conditional expectations in (8)–(10) are only well-defined when nc̄ is a positive
integer, whereas Assumption 8 requires the functions Q,Q0, and Q1 to be defined over a continuous
range of values for c̄. This problem is easily solved by extending the definitions of Q0 and Q1.
In many cases, the natural extension will be obvious. In the linear potential outcomes model, for
example, (12) and (13) agree with (9) and (10) when these conditional expectations are well-defined
and satisfy all the conditions of Assumption 8

More generally, we can always construct extended definitions of Q0 and Q1 to satisfy these
regularity conditions. Here we provide one such construction based on linear interpolation. Let

c̄`(c̄, n) ≡
b(n− 1)c̄c

n− 1
, c̄u(c̄, n) ≡

d(n− 1)c̄e
n− 1

.

By construction, (n− 1)c̄u(c̄, n) and (n− 1)c̄`(c̄, n) are always non-negative integers. Now let

Q`
z(c̄, n) ≡ E

[
1(Zig = z)f(D̄ig)f(D̄ig)

′∣∣ C̄ig = c̄`(c̄, n), Ng = n
]

Qu
z (c̄, n) ≡ E

[
1(Zig = z)f(D̄ig)f(D̄ig)

′∣∣ C̄ig = c̄u(c̄, n), Ng = n
]

for z = 0, 1. Notice that Q`
0,Q

`
1 and Qu

0 ,Q
u
1 are well-defined regardless of whether (n − 1)c̄ is an

integer. From these ingredients, we construct extended definitions Q∗
0 and Q∗

1 of Q0,Q1 as

Q∗
z(c̄, n) = [1− ω(c̄, n)]Q`

z(c̄, n) + ω(c̄, n)Qu
z (c̄, n); ω(c̄, n) ≡ c̄− c̄`(c̄, n)

c̄u(c̄, n)− c̄`(c̄, n)
∈ [0, 1]

for z = 0, 1. Since both Q`
z and Qu

z are symmetric and positive definite, their convex combination
Q∗

z is as well. To show that this construction satisfies Assumption 8 (iii), define

Q∞
0 (c̄) ≡ E

[
(1− Sg)f(c̄Sg)f(c̄Sg)

′] , Q∞
1 (c̄) ≡ E

[
Sgf(c̄Sg)f(c̄Sg)

′] .
Recall that 0 ≤ Sg ≤ 1 a discrete random variable with finite support, c̄ is a real number between
zero and one, and f is a K-vector of Lipschitz-continuous functions, all of which are bounded on
[0, 1]. It follows that both Q∞

0 and Q∞
1 are bounded and Lipschitz-continuous on [0, 1]. Accordingly,

by Lemma 1, Jensen’s inequality, and the triangle inequality we can show that∥∥∥Q`
z(c̄, n)−Q∞

z (c̄`(c̄, n))
∥∥∥ ≤ L√

n− 1
, ‖Qu

z (c̄, n)−Q∞
z (c̄u(c̄, n))‖ ≤ L√

n− 1

where L denotes an arbitrary, finite, positive constant. Similarly,

‖Q∞
z (c̄)−Q∞

z (c̄`(c̄, n))‖ ≤ L

n− 1
, ‖Q∞

z (c̄)−Q∞
z (c̄u(c̄, n))‖ ≤ L

n− 1
.

Combining these inequalities an applying the triangle inequality, it follows that∥∥∥Qu
z (c̄, n)−Q`

z(c̄, n)
∥∥∥ ≤ L√

n− 1
, ‖Qu

z (c̄, n)−Q∞
z (c̄)‖ ≤ L√

n− 1

and as a consequence ∥∥∥Q`
z(c̄, n)−Q∞

z (c̄)
∥∥∥ ≤ L√

n− 1
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where, again, L is an arbitrary, finite, positive constant. Thus,

‖Q∗
z(c̄, n)−Q∞

z (c̄)‖ ≤
∥∥∥Q∗

z(c̄, n)−Q`
z(c̄, n)

∥∥∥+ ∥∥∥Q`
z(c̄, n)−Q∞

z (c̄)
∥∥∥

≤
∥∥∥Q∗

z(c̄, n)−Q`
z(c̄, n)

∥∥∥+ L√
n− 1

= ω(c̄, n)
∥∥∥Qu

z (c̄, n)−Q`
z(c̄, n)

∥∥∥+ L√
n− 1

≤ L√
n− 1

using the definitions of Q∗
z and ω(c̄, n) from above. Combining all of the preceding inequalities,∥∥∥Q∗

z(Ĉig, Ng)−Q∗
z(C̄ig, Ng)

∥∥∥ ≤ L

{
1√
n− 1

+
∣∣∣Ĉig − C̄ig

∣∣∣}
since n ≤ Ng and Q∞

z is Lipschitz-continuous.
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