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1 Introduction

Random saturation experiments provide a powerful tool for estimating causal effects in
the presence of social interactions—also known as spillovers or interference—by generating
exogenous variation in both individuals’ own treatment offers and the fraction of their peers
who are offered treatment ( , ). These two sources of variation
allow researchers to study both direct causal effects—the effect of Alice’s treatment on her
own outcome—and indirect causal effects—the effect of Bob’s treatment on Alice’s outcome.
A complete understanding of both direct and indirect effects is crucial for program evaluation
in settings with social interactions. When considering a national job placement program, for
example, policymakers may worry that the indirect effects of the program could completely
offset the direct effects: in a slack labor market, job placement could merely change who is
employed without affecting the overall employment rate ( , ).

In this paper we provide methods that use data from a randomized saturation design

to identify and estimate direct and indirect causal effects in the presence of social inter-
actions and one-sided non-compliance. In real-world experiments non-compliance is the
norm rather than the exception. In their study of the French labor market,
( ) found that only 35% of workers offered job placement services took them up. Despite
pervasive non-compliance in practice, most of the existing literature on randomized satura-
tion designs either assumes perfect compliance—all subjects adhere to their experimentally-
assigned treatment allocation—or identifies only intent-to-treat-effects—the effect of being
offered treatment. In contrast, we use the experimental design as a source of instrumental
variables to estimate local average treatment effects (LATE) when subjects endogenously
select into treatment on the basis of their experimental offers. In a world of homogeneous
treatment effects, a simple instrumental variables (IV) regression using individual treatment
offers and group saturations as instruments would identify both direct and indirect effects. In
most if not all real-world settings, however, treatment effects vary across individuals. In the
presence of heterogeneity, this “naive” IV approach will not in general recover interpretable
causal effects. To allow for realistic patterns of heterogeneity in a tractable framework,
we study a flexible random coefficients model in which causal effects may depend on an
individual’s treatment take-up as well as that of her peers.

Our approach relies on four key assumptions. First is partial interference: we assume that
each subject belongs to a single, known group and that social interactions occur only within
groups. This is reasonable in many experimental settings where, for example, groups corre-
spond to villages, and social interactions across them are negligible. Second is anonymous

interactions: we assume that individuals’ potential outcome functions depend on their peers’



treatment take-up only through the average take-up in their group. Under this assumption
only the number of treated neighbors matters, not their identities ( , ). In the
absence of detailed network data, the assumption of anonymous interactions is a natural
starting point and is likely to be reasonable in settings such as the labor market example
described above. Third is one-sided non-compliance: we assume that the only individuals
who can take up treatment are those to whom treatment was offered via the experimental
design. One-sided non-compliance is relatively common in practice, for example when an
“encouragement design” is used to introduce a new program, product or technology that
is otherwise unavailable (e.g. , : , ). We refer to
our fourth key assumption as individualized offer response, or IOR for short. IOR requires
that each subject’s treatment take-up decision depends only on her own treatment offer,
and not on the offers made to her peers. While IOR is a strong assumption, it is testable
and a priori reasonable in many contexts. In ( ), for example, local labor
markets are large and potential participants in the job placement program are unlikely to
know each other in advance. As such, they are unlikely to influence each other’s treatment
take-up decisions, even if they may impose employment externalities on one another. IOR
is also reasonable in online settings where other subjects’ take-up decisions are unobserved
( , : , : , ) or confidential ( , ).

Because it rules out any form of strategic take-up, IOR allows us to divide the population
into never-takers and compliers, two of the traditional LATE strata.’ Under the randomized
saturation design and a standard exclusion restriction, we provide linear population IV
regressions that identify average causal effects for a certain type of person: someone in a
group of size n with a share ¢ of compliers among her neighbors. Averaging these “localized”
effects over the distribution of n and ¢ in the population identifies LATE-type direct and
indirect causal effects.? The key to our approach is a result showing that conditioning on
n and ¢ breaks any dependence between peers’ average take-up and an individual’s random
coefficients. Under the randomized saturation design, the share of Alice’s neighbors who
are offered treatment is exogenous. Under IOR, their average take-up depends only on how
many of them are compliers and whether they are offered treatment. Thus, conditional on
n and ¢, any residual variation in the take-up of Alice’s neighbors comes solely from the
experimental design. Although group size is observed, the share of compliers in a given
group is not. In a large group, however, the rate of take-up among those offered treatment,
call it ¢, closely approximates ¢. Moreover, when all groups are large, conditioning on group

size becomes irrelevant. Accordingly, we propose kernel-based estimators of the “localized”

1One-sided non-compliance rules out always-takers and defiers.
2 ( ) call this two-step procedure the “localize-then-average” approach.



treatment effects that condition only on €.

This paper relates most closely to recent work by ( ) and
( ), who also study randomized saturation experiments with social interactions under
non-compliance. ( ) identify a “complier average direct effect” (CADE), in

essence a Wald estimand calculated for all groups with the same share of offers (saturation).
While it is identified under a weaker condition than IOR, the CADE is in fact a hybrid
of direct and indirect effects unless one is willing to impose IOR. Under IOR, the CADE
quantifies the effect of an individual’s own treatment take-up, given that her group has
been assigned a particular saturation. In contrast, the direct effects that we recover below

quantify the effect of an individual’s own treatment take-up given that a certain share of

her neighbors have taken up treatment. ( ) identify effects similar to
those of ( ) using a variant of our IOR assumption that they call “personalized
encouragement.” Both ( ) and ( ) identify well-defined

effects while placing limited structure on the potential outcome functions. The cost of this
generality is that the effects they recover have a “reduced form” flavor, and are only defined
relative to the specific saturations used in the experiment. While our random coefficients
model places more restrictions on the potential outcome functions, it allows us to recover
“fully structural” causal effects that are not specific to the design of the experiment.

Our paper also relates to the applied literature that estimates spillover effects in various
settings. This includes “partial population” studies in which a subset of subjects in the
treatment group are left untreated and their outcomes are compared to those of subjects
in a control group ( , : , :

, : , ; , ). It also includes
cluster-randomized trials where groups are defined by a spatial radius within which social
interactions may arise ( , : , ) and more recent
papers that use a randomized saturation design ( , ; , ;

, : , ). In general, this literature estimates intent-
to-treat (ITT) effects. Two notable exceptions are ( ) and
( ) who estimate effects that are similar in spirit to the CADE of ( ). Our
identification approach also relates to a large literature on random coefficients models, the
closest being ( ), as well as methods that identify structural
effects using control functions ( , ; , ). In our
setting, the share of compliers in a group plays the role of a control function. Our model is
also conceptually similar to the functional IV model of ( ).

The remainder of the paper is organized as follows. Section 2 details our notation and

assumptions, while Section 3 presents our identification results. Section 3.1 suggests a fea-



sible, kernel-based estimator of the effects identified in Section 3 and Section 4 concludes.

Proofs appear in the appendix.

2 Notation and Assumptions

We observe N individuals divided between G groups. We assume throughout the paper that
each group has at least two members so there is scope for social interactions. Let g =1,...,G
index groups and ¢ = 1, ..., N, index individuals within a given group g. Using this notation,
N =3, N,. For each individual (i, g) we observe a binary treatment offer Z;;, an indicator
of treatment take-up D;,, and an outcome Y;,. For each group g we observe a saturation
Sy € [0, 1] that determines the fraction of individuals offered treatment in that group. A bold
letter indicates a vector and a g-subscript shows that this vector is restricted to members of
a particular group. For example Z is the N-vector of all treatment offers Z;, while Z is
the N,-vector obtained by restricting Z to group g. Define D and D, analogously and let
S denote the G-vector of all S;. At various points in our discussion we will need to refer to
the average value of a variable for everyone in a group besides person (i,g). As shorthand,
we refer to these other individuals as person (i, g)’s neighbors. To indicate such an average,
we use a bar along with an (i, g) subscript. For instance, Dig denotes the treatment take-up

rate in group ¢ excluding (7, g), while Zig is the analogous treatment offer rate:

_ 1 = 1
-Dig = m Zng, Zig = ﬁ ZZJQ (].)

JFi JFi

Note that, under this definition, Dig and Z-g vary across individuals in the same group
depending on their values of D;, or Z;,. For example in a group of ten people, of whom five
take up treatment, Dig = 0.51if D;; = 0 and 0.4 if D;y = 1. We now introduce our basic

assumptions, beginning with the experimental design.

Assumption 1 (Assignment of Saturations). Let S = {s1, s2,...,5;} where s; € [0,1] for
all j. Saturations are assigned to groups completely at random from S such that m; groups

are assigned to saturation s; with probability one, where Z;.le m; = G. In other words,

m;/G forj=1,...,J

0 otherwise

P(Sy = s;) = {

Assumption 1 details the first stage of the randomized saturation design. In this stage,
each group g is assigned a saturation S, drawn completely at random from a set S. In

the example from Figure 1, fifty groups (balls) are divided equally between five saturations
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Figure 1: Randomized Saturation Design. In the first stage groups (balls) are randomly assigned
to saturations (urns). In the second stage, individuals within a group are randomly assigned
treatment offers at the saturation selected in the first stage. The figure zooms in on a group of size
eight that has been assigned to a 25% saturation: two individuals are offered treatment.

(urns), namely S = {0,0.25,0.5,0.75,1}. The saturation drawn in this first stage determines
the fraction of individuals in the group that will be offered treatment in the second stage.
Figure 1, for example, depicts a group of eight individuals that has been assigned to the 25%
saturation: two are offered treatment and six are not. These second-stage treatment offers

can be made in two possible ways, detailed in the following two assumptions.

Assumption 2 (Bernoulli Offers).

P(Z, =25 =5, N,=n) = Hszi(l —s)77

i=1
Assumption 3 (Completely Randomized Offers).
n

P(Z,=2|S, =5 N, =n) = (Lnsﬂ_l’ if 2iia s = Lns)

0, otherwise.



Assumption 2 and Assumption 3 are mutually exclusive ways to assign treatment offers.
Under Assumption 2, the assigned saturation s determines the probability that a person in
group g will be offered treatment, but the number of treatment offers actually made within
the group is random: offers within a group are independent Bernoulli random variables with
probability of success s, the realization of S,;. Rather than determining the probability of
treatment, under Assumption 3 the assigned saturation s fixes the number of treatment offers
made within a group at |ns| where |z] denotes the largest integer less than or equal to x.
For example, in a group of 99 people and an assigned saturation of 50% we would make | 0.5 x
99| = 49 treatment offers. While Bernoulli treatment offers are statistically independent,
completely randomized offers exhibit dependence within a given group. Because the total
number of offers is fixed, the fact that Alice was offered makes it slightly less likely that Bob
will be.

The randomized saturation design creates exogenous variation at the individual and
group levels. Within a group some individuals are offered while others are not. Between
groups, some have a large number of individuals offered treatment—a high saturation—while
others do not. Many randomized saturation experiments, like the illustration in Figure 1,
feature a 0% saturation or even a 100% saturation. We refer to 0% and 100% saturations
collectively as corner saturations to distinguish them from all other saturations, which we call
interior. There is no variation in treatment offers between individuals in a group assigned a
corner saturation. For this reason, as we discuss in section 3 below, the number of interior
saturations in the design will determine the flexibility with which we can model potential
outcome functions.

Assumptions 1-3 concern the design of the experiment. Our remaining assumptions, in
contrast, concern the potential outcome and treatment functions. Without imposing any
restrictions, an individual’s potential outcome function Y;,(-) could in principle depend on
the treatment take-up of all individuals in the sample. We denote this unrestricted potential
outcome function by Y;,(D). Assumption 4 restricts Y;,(-) to depend only on D;, and D,

via a random coefficients model.

Assumption 4 (Random Coefficients Model). Let f(-) be a K-vector of known functions
fi:[0,1] = R, each of which satisfies sup,¢(o 1) | fr(7)| < 00. We assume that

Y; (D) = Y;g(Dg) = Y;g<Dig7 Dig) = f(Dig)/ [(1 - Dig>0ig + Diglpig}

where 8;, and ;, are K-dimensional random vectors that may be dependent on (D;g, D;g).

The first equality in Assumption 4 is the so-called partial interference assumption, used

widely in the literature on spillover effects. This assumption states that there are no social in-



teractions between individuals in different groups: only the treatment take-up of individuals
in group ¢ affects the potential outcome of person (i, g). The second equality in Assump-
tion 4 states that person (7, g)’s potential outcome is only affected by the treatment take-up
of the others in her group through the aggregate D;,.* This is related to the anonymous
interactions assumption from the network literature as it implies that only the number of
(1, g)’s neighbors who take up treatment matters for her outcome; the identities of the neigh-
bors are irrelevant ( , ). The third equality in Assumption 4 posits a finite basis

function expansion for the potential outcome functions Y;,(0, D;,) and Y;,(1, D;,), namely

K K
zg O ng = Zez(:; fk D Y;g(laDig) = Z¢§§)fk(Dig)
k=1 k=1

or, written more compactly in matrix form,

Yig = XégBigv Xig = ® f(Dig), By

0,
2
1/)z‘g - 92‘9] ( )

where the coefficient vectors 6;, and ,,, and hence B, are allowed to vary arbitrarily

ig

across groups and individuals. If, for example, person (i, g) has some prior knowledge of her
potential outcome function Y;,(-,-), her take-up decision may depend on 8;, and ¥,,- More
generally, the same unobserved characteristics that determine a person’s decision to take up
treatment could affect her potential outcomes. To account for these possibilities, we allow
arbitrary statistical dependence between (D;,, D;,) and B,

Ideally, our goal would be to identify the average direct and indirect causal effects of
the binary treatment D,,. Under Assumption 4, we define these as follows, building on
the definitions of ( ). The direct treatment effect, DE, gives the
average effect of exogenously changing an individual’s own treatment D;, from 0 to 1 while

holding the share of her treated neighbors D, fixed at d, namely
DE(d) = E [Yjy(1,d) = Yjy(0,d)] = £(d)'E [t;, — 0] (3)

where the expectations are taken over all individuals in the population from which our
experimental subjects were drawn. Note that we define Dig to exclude person (i, g), ensuring
that DE(d) is well-defined. An indirect treatment effect, in contrast, gives the average effect

of exogenously increasing a person’s share of treated neighbors D;, from d to d + A while

3Recall that D, is defined to exclude person (i, g).



holding her own treatment D;, fixed at d, in other words

TEq(d, A) = E [Yiy(d,d + A) = Yi(d, d)]

4
= [f(d+A) = £(d)] {(1 - A)E [0,y] + dE [2p,,] } @)

where A is a positive increment. There are two indirect treatment effect functions, IEy and
IE,, corresponding to the two possible values at which we could hold D;, fixed: a spillover on
the untreated, and a spillover on the treated. Because the direct and indirect causal effects
are fully determined by E[B,,] under Assumption 4, this is our object of interest below.
Under perfect compliance D;, would simply equal Z;,, making both D;, and D;, ex-
ogenous. In this case a sample analogue of E[Y;,(d,d)] could be used to recover all of the
treatment effects discussed above, at least at values of d that arise in the experimental design.
Unfortunately non-compliance is pervasive in real-world experiments, greatly complicating
the identification of causal effects. In a large-scale experiment carried out in France, for ex-
ample, only 35% of unemployed workers offered job placement services took them up (
, ). Those who did take up treatment likely differ in myriad ways from those who
did not: they may, for example, be more conscientious. One way to to avoid this problem
of self-selection is to carry out an intent-to-treat (ITT) analysis, conditioning on Z;, and S,
rather than D;, and Dig. But with take-up rates as low as 35%, ITT estimates could be very
far from the causal effects of interest. In this paper we adopt a different approach. Following
the tradition in the local average treatment effect (LATE) literature, we provide conditions
under which direct and indirect causal effects—rather than ITT effects—can be identified for
well-defined sub-populations of individuals. We focus on the case of one-sided noncompli-
ance, in which only those offered treatment can take it up. One-sided non-compliance is

fairly common in practice (e.g. , ) and simplifies the analysis considerably.®
Assumption 5 (One-sided Non-compliance). If Z;; = 0 then D;, = 0.

To account for endogenous treatment take-up, we define potential treatment functions
D,4(-). In principle these could depend on the treatment offers of every individual, Z in the
experiment. The following assumption restricts D;,4(-) to permit identification of the direct

and indirect causal effects described above.

Assumption 6 (IOR). ng(Z> = ng(Zg> = Dig<Zig7 Zzg) = ng(Zz )

The first equality of Assumption 6 is a partial interference assumption: it requires that

there are no social interactions in take-up between individuals in different groups. The

4An extension of our results to two-sided non-compliance is currently in progress.



second equality of Assumption 6 states that person (7, g)’s take-up decision depends on the
treatment offers of others in her group only through the fraction Z;, of treatment offers
made to the others in her group.” Unfortunately these first two equalities are not in general
sufficient to point identify direct and indirect causal effects. The third equality, which we
call individualistic offer response or IOR for short, imposes the further restriction that each
person’s take-up decision depends only on her own treatment offer. IOR states that there
are no social interactions in take-up.® This is a strong assumption, but one that has also
appeared in the existing literature. ( ), for example, employ a variant
of IOR that they called “personalized encouragement.” And while ( ) derive
their so-called “complier average direct effect (CADE)” under a weaker condition than IOR,
the CADE is in fact a hybrid of direct and indirect effects unless one is willing to assume
that there are no social interactions in take-up. Fortunately, IOR is testable: it implies, for
example, that E[D;,|Z;, = 1,5, = s] does not vary with s. If the observed average take-up
rate among individuals who are offered treatment varies with saturation, this indicates a
violation of TOR.

Under IOR and one-sided non-compliance (Assumptions 5 and 6), we can divide individ-
uals into never-takers and compliers, two of the principal strata from the LATE literature.
Never-takers are defined as those for whom D;,(0) = D;,4(1) = 0, while compliers are those
for whom D,,(2) = z for all 2. Defining Cj, to be the indicator that person (i,g) is a

complier, Assumptions 5-6 imply that

_ 1
Dig = CigZig;  Dig = > CigZig (5)
g J#i

By analogy to Z;, and D;,, we define Cj, to be the share of compliers among person (i, g)’s

neighbors in group ¢, namely

Co= 512 C (0
J#i
Note that C_‘ig varies across individuals in the same group, depending on their values of Cj,.
Finally, let C, denote the vector of C;, for all individuals in group g.
Our final assumption is an exclusion restriction for the treatment offers Z, and saturation
Sy. To state it we require two additional pieces of notation. First, let B, denote the vector

that stacks B, for all individuals in group g. Second, following ( ), let “_1.” denote

Recall that the average Z;, is defined to exclude (i, g).

SWork in progress explores the possibility of relaxing IOR in specific settings to obtain point, or at least
partial identification.

"Under one-sided non-compliance, Assumption 5, there are no always-takers.
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(conditional) independence so that X _Il Y indicates that X is statistically independent of YV
while X 11 Y|Z indicates that X is conditionally independent of Y given Z. Using this

notation, the exclusion restriction is as follows.
Assumption 7 (Exclusion Restriction).

(Z) SQJ'L(C.W BQ’ NQ)

(it) Z, 1 (Cy,B,)|(Sy, Ny)

Intuitively, Assumption 7 states that (C,, B,, N,) are “predetermined” with respect to
the treatment offers and saturations. In a traditional LATE setting, the counterparts of
Assumption 7 are the “unconfounded type” assumption and the independence of potential
outcomes and treatment offers. Assumption 7 could be violated in a number of ways. If,
for example, individuals chose their group membership based on knowledge of their group’s
saturation, N, would not be independent of S,. Similarly, if some individuals decided to
comply with their treatment offers only because their group was assigned a high saturation,
C, would not be independent of S,. This latter possibility illustrates that Assumption 7
partially embeds IOR by ruling out “selection into compliance.” More prosaically, Assump-
tion 7 would be violated if either S, or Z;, had a direct effect on the random coefficients
B,. Notice that part (ii) of Assumption 7 conditions on (S,, N,). This is because the second
stage of the randomized saturation experiment assigns Z, conditional on this information:

see Assumption 2 and Assumption 3.

3 Identification

Given that the functional form of the random coefficients model in Assumption 4 is known,
one might be tempted to suppose that a simple IV estimation strategy using functions of
(Zig, Sy) as instruments for (D;gy, f(D;g)) could recover E[6;,] and E[tp;, — 6;,]. Indeed, two-
stage least squares identifies the average effects in a random coefficients model provided that
the first stage relationship between instruments and endogenous regressors is homogeneous
( , : , , , ). Unfortunately the first stage
in our model is heterogenous so this result does not apply: the conditional distribution of

D;, given S, varies with (Cj,, N,), as shown in the following lemma.

Lemma 1. Let ¢ be a value in the interval [0, 1] such that (n —1)¢ is a positive integer. Now
define X as the sum of (n—1)¢ independent Bernoulli trials, each with probability of success

equal to s, so that X ~ Binomial((n — 1)¢,s). Further let Y be the number of successes
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obtained when |ns| — z draws are made without replacement from a population of size (n—1)
containing (n —1)é successes, so that' Y ~ Hypergeometric(n — 1, (n — 1)¢, [ns| — z). Then,

conditional on (Nyg =n,S, =s5,C, = c, C_’ig = ¢, Zijy = z) and under Assumptions 1 and 5-7,
(i) Di, =* X/(n — 1) under Bernoulli offers (Assumption 2), and
(ii) Diy =Y /(n — 1) under completely randomized offers (Assumption 3)

where = denotes equality in distribution.

Intuitively, the problem presented by the Lemma 1 is as follows. Although S, is randomly
assigned, the variation that it induces in D;, is mediated through the share of compliers
Ciq- Accordingly if C;,—a source of first-stage heterogeneity—is correlated with the random
coefficients in the second stage, the IV estimator will be inconsistent. Consider, for example,

a simple linear model for the potential outcomes:
}/;g = Qg + ﬁigDig + ’YigDig + 5igDigDig-

If we restrict attention to individuals who are not offered treatment, Z;, = 0, the model

becomes Y, = ;4 + vigDig. Note that there is no sample selection bias because Z;, is

randomly assigned. Defining o = E(«;,) and v = E(v;,), we can re-write the model as

)/ig =a+ ’yDig + €igs Eig = (aig - Oé) + (’Vig - V)ng

so that the IV estimand for v, using S, to instrument for D,,, is given by

COV(}/igp Sg) COV(&ig, ?g) Cov [(%9 - V)Dig’ Sg]

E B —— ——— = — 7
= Cov(Dy.S,) T Cov(S,, D) T Cov(Dy,S,) (7)

since « is constant and «;, is uncorrelated with S, by Assumption 7 (i). To express the bias

term from (7) in a more transparent form, we rely on the following lemma.

Lemma 2. Let By be an element of B, and = E(B;,). Under Assumptions 1-2 and 5-7,
(i) Cou(S,, D;y) = Var(S,)E(C;,) and
(ii) Cov[(Big — B)Dig, Sy| = Cov(Big, Ciy) Var(Sy).

Applying Lemma 2 to (7) gives (yrv —7) = Cov(vig, Ciy) /E(Ciy) under Bernoulli offers.®

Hence, IV fails to identify the average spillover effect unless the individual-specific spillover

8 An analogous but slightly more complicated expression holds for completely randomized offers.
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effects are uncorrelated with the share of compliers. This condition could easily fail in
practice. In the labor market example from the introduction, cities with a particularly
depressed labor market might be expected to contain a large share of compliers. If negative
employment spillovers are more intense in such cities, IV will not recover the true indirect
effect. To address this challenge, our identification results rely on a widely-used strategy
from the literature on random coefficients models. Aptly dubbed “localize then average”
by ( ), this approach proceeds in two steps. First we localize.
Conditional on (Oig = ¢, N, = n) we show that certain population IV regressions identify
expectations of B;, for a particular type of individual: someone in a group of size n who
has é(n — 1) complier neighbors. Next we average, obtaining an overall causal effect by
integrating out (C’ig,Ng). While N, is observed, C_’Z-g is not. If Ny is large, however, C’ig
is well-approximated by D,-g / Zg. In subsection 3.1 we use this idea to provide feasible
estimators that are consistent when both the size and number of groups grow. For compliers
we recover the direct causal effect along with both indirect effects, IEq and IE;; for never-
takers, and the population as a whole, we obtain the indirect effect when untreated, IE,."

Our localize-then average approach relies on the following conditional independence result.

Theorem 1. Suppose that either Assumption 2 or Assumption 3 holds. Then, under As-
sumptions 1 and |7, (Zig, Dig, Sg)1L(Big, Cig)|(Cigy Ny).

Theorem 1 implies that conditioning on (C

ig» V) is sufficient to break the dependence

between f(D,,) and (B,,, C;,). The intuition for this result is as follows. Conditional on
C,, and N,, we know precisely how many of (i, g)’s neighbors are compliers. Given this
information, IOR implies that all remaining variation in D;, is arises solely from experimental
variation in the saturation S, assigned to different groups, and the share of compliers offered
treatment across groups assigned the same saturation. So long as Z;, and S, do not affect
(Big, Cy), Assumption 7, it follows that (Z,, Diy, S,) are exogenous given (Cj,, N,), even
when individuals decide whether or not to take up treatment based on knowledge of their
potential outcome functions. Theorem 1 allows us to identify “localized” treatment effects

via the following result.

Theorem 2. Let )N(Z-g = f(D;,) and W,, = (1, Zig)’®)N(ig. Suppose that either Assumption 2
or Assumption 3 holds. Then, under Assumptions 1 and /-7, and whenever the respective

mnuverses exist,

E(0i9|éig7Ng)

‘ _ — B [W;, X! [Cip. N,] T E [W, Y5, |Cigs N, ]
() E(flplg — 0ig|Cig = 1’Cig7Ng> [ g g| g g] [ g g| g g]

9For definitions of the direct and indirect effects in terms of our random coefficient model see (4) and (3).
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(i1) Bl |Cig = 1, Ciy, Ny] = BIDiy Ziy Xy Xl | Cogy Ny 'E | Diy 21X Y| Cigy Ny |, and

(Z”) E [0i9|0i9 = 0’ Cigv Ng} = E[(I_Dig)zigf(igf(/ éigv Ng]ilE[(l_Dig)Zigf(igY;ﬂéiga Ng]

z'g|

-1

(i) B [8y]Cig Ny = B [(1 = Zig) X, X0, |Cpy N, | B[ (1= Z3g)Kig¥ig Cig, Ny

where X, s as defined in (2).

Theorem 2 is an identification result for four sets of just-identified conditional IV moment
equations. Each set restricts attention to a particular kind of person: if (C_’Z-g =¢, Ny, =n),
we only average over individuals in groups of size n who have ¢(n — 1) compliers among
their neighbors. Subject to this restriction, part (i) of Theorem 2 and the lower block of
part (i) further restrict attention to individuals who are themselves compliers. Part (iii), in
contrast, considers only never-takers with (C;, = ¢ N, = n) while part (iv) and the upper
block of part (i) impose no further restrictions beyond (Cj, = ¢ N, = n). Comparing the
left-hand side of each of the four equalities with (4) and (3), we see that Theorem 2 identifies
conditional direct and indirect causal effects, provided that the requisite inverses exist. The
bottom block of part (i) identifies the direct effect DE for compliers with (Cy, = ¢, N, = n),
while part (ii) identifies the indirect effect IE; for treated compliers with (Cy, = ¢, N, = n).
Combining the bottom block of (i) with (ii) allows us to solve for I [6;4|Cyy = 1, Cig, Ny],
identifying the other indirect effect, IEy, for compliers with (C_'Z-g = ¢, N, = n). Thus, we
recover “localized” versions of all causal effects for compliers. Because, by definition, they
never take up treatment, we cannot identify DE or IE; for individuals with C;, = 0. Part
(iii) of Theorem 2, however, allows us to identify IEq for never-takers with (C;, = ¢, N, = n)
while part (iv) identifies the same indirect effect for all individuals with (C;, = ¢ N, = n).
Notice that, while we use Z;, to instrument for Dy,, £(D;,) serves as its own instrument in
the moment equations from Theorem 2. As explained above, D;, is exogenous conditional
on (Ciy, Ny), and is hence its “own best instrument.”

The equalities in Theorem 2 are only valid, and hence the relevant effects are only iden-
tified, when the appropriate matrix inverses exist. The following lemma provides high-level
necessary and sufficient conditions under Bernoulli offers (Assumption 2). Analogous results

for completely randomized offers appear in the Appendix.

]'iemma 3. For z = 0,1, define Q,(¢,n) = ]E[fiigf(;gmg = 2,Ci, = ¢, N, = n] where
Xig =£(Dyy). Then, under Assumptions 1, 2, and /-7,

(i) E[W X, |Cig = ¢, Ny = n] is invertible <= E (Cyy|Ciy = ¢ Ny =n) # 0, E(S,) ¢
{0,1}, and both Qq(¢,n) and Q(¢,n) are invertible;
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(i1) E[DigZig}NCig)N(;gm’w = ¢, N, = n] is invertible < E(Cy|C;y = ¢
E(S,) # 1, and Qi(¢,n) is invertible;

=
I
=
H
=

(1i7) E[(1 — Dig)ZigXigX;g@g = ¢, N, = n] is invertible <= E(C;,|Ci, =¢, N, =n) # 1,
E(S,) # 0, and Q1(¢,n) is invertible; and

(iv) E[(1 — Z,-g)f(igfi;g@g = ¢, N, = n] is invertible <= [E(S,;) # 1 and Qo(¢,n) is

invertible.

The four parts of Lemma 3 correspond to those of Theorem 2. Parts (i) and (ii) concern
conditional effects for compliers. Unsurprisingly, these effects are only identified at (C_’ig =
¢, N, = n) if there are in fact compliers in the population who reside in a group of size
n and have (n — 1)¢ compliers among their neighbors. This is the case precisely when
E(Ciy|Ciy = ¢ N, = n) # 0. Similarly, part (iii) concerns a conditional effect for never-
takers. This effect is only identified at (¢, n) if there are in fact never-takers in the population
who reside in a group of size n and have (n — 1)¢ compliers among their neighbors, i.e. if
E(Cyy|Ciy = & N, = n) # 1. Because part (iv) identifies a conditional effect for the whole
population, it does not require a restriction on ]E(C’Z-Q\C_‘ig, N,). The restrictions placed on
E(S,) in Lemma 3 are weak: we need only impose that the average saturation is neither
zero or one. This condition merely ensures that some individuals are offered treatment and
others are not: without it, there would be no variation in Z;, across the experiment.

The second step of our localize-then-average approach integrates the conditional causal
effects identified by Theorem 2 over the distribution of (Ci,, N,) to yield LATE-type direct

and indirect causal effects.

Theorem 3. Let Q,, z = 0,1, denote the set of all (¢,n) in the support of (Ciy, N,) such that
Q. (¢,n) is invertible and define the shorthand Hy, = (Ciy, Ny). Then, so long as E(S,) # 0,1
following effects are point identified under Assumptions 1, 2, and }-7:

(i) Elth;, — 0i4|Cig = 1, Hig € {Qo N Q1 }]
(ii) Elp,,|Cig = 1, Hiy € Q1]
(1it) E[0;4|Ciy =0, H;y € Qo]
() E[0;4H;y € Qo]

Theorem 3 uses iterated expectations to average the “localized” causal effects from The-
orem 2 over the appropriate conditional distributions of (@-g, Ny). This yields the average

direct and indirect effects for compliers, parts (i) and (ii), the indirect effect for untreated
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never-takers, part (iii), and the indirect effect for the untreated, part (iv). Notice that the
conditions E(C;,|Ci, = ¢, N, = n) # 0,1 from parts (i)—(iii) of Lemma 3 are not among the
assumptions required for Theorem 3. Any points (¢, n) for which E(Cy,|Cy, = ¢, N, =n) =0
by definition contains no compliers. Accordingly we need not include this point when com-
puting average effects for compliers in parts (i) and (ii), so the failure of invertibility from
Lemma 3 is irrelevant. Analogously, if E(C;,|C;, = & N, = n) = 1, then we need not include
(¢,n) when computing average effects for never-takers in part (iii).

Note that the four parts of Theorem 3 average over different conditional distributions

for (C,

ig» Ng). For simplicity, suppose for the moment that Q,(¢, n) is invertible over the full
support of (Cj,, Ny). Then, part (iv) of Theorem 3 simply averages over the unconditional
distribution of (Cj,, N,). In contrast, parts (i)—(iii) average over the conditional distribution
of (Ciy, N,)|Ciy where Cy, indicates the type of person—complier or never-taker—for whom
the effect is identified. By Bayes’ rule, we can re-write this in terms of the unconditional
distribution of (Cy,, N,) as

gyt Vg

P(Cig)

P<éig>Ng‘Cig> = [

where P(C;,|Ciy, N,)/P(C;,) is an importance weight, capturing the share of compliers (or
never-takers) among individuals with (C;, = ¢, N, = n) relative to the population as a whole.
In parts (i) and (i) of Theorem 3, the importance weight is E(Cj,|Ciy, N,)/E(Ciy). Similarly,
in part (iii) the importance weight is given by E(1 — C;,|Ciy, Ny)/E(1 — Cy,).

The key question for interpreting Theorem 3, and indeed the real substance of Lemma 3,
concerns the invertibility of Qq(¢,n) and Qi(¢,n). Because )Afig = f(D,,), it follows that
the invertibility of Qp and Q; depends only on f and the distribution of D;,|(Ciy, Ny, Ziy)-
Under the conditions of Theorem 2, this distribution is known: it depends solely on the
experimental design, as shown in Lemma 1. As such, one can always calculate the rank of
Qo and Q; in a particular application. Indeed, one can design the experiment to ensure
that these matrices are invertible. The following lemma establishes an important guiding

principle of the design: the experiment should contain at least K saturations.

Lemma 4. Let K be the dimension of £ and J be the number of saturations, and define
Qi(e,n) = Q. ([(n—1)¢]/(n—1),n). Under the conditions of Theorem 2 and for any
¢ e [0,1], K > J implies
lim det[Qg(¢,n)] = lim det[Qj(¢,n)] = 0.
n—o0

n—0o0

Lemma 4 shows that Qq(¢,n) and Q;(¢,n) will be nearly singular when n is large unless
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there are fewer basis functions in f than there are saturations in the experimental design.
Because our estimators in subsection 3.1 rely on the assumption of large groups, it is par-
ticularly important that the experiment be designed, or f be chosen, to avoid this potential
weak identification problem. We introduce the function Q¥(¢,n) merely as a notational de-
vice to allow us to take limits as n — oo while holding ¢ fixed: Q,(¢,n) is only well-defined
if (n —1)c is a positive integer whereas Q?(¢, n) is defined for any ¢ € [0, 1] and n € N.!°
To understand the relationship between Lemma 3 and Lemma 4, consider a simple
example with Bernoulli offers and linear basis functions: f(z)’ = (1,z). Conditional on
(Ciyy =¢, N, =n,Zi, = 2,8, = s), Lemma 1 establishes that C;, is equal in distribution to

a Binomial((n — 1)¢, s) random variable divided by (n — 1). Hence,

> [1 (e, +¥] vis=o [eig] [en]

n—1

by iterated expectations, Bayes’ Theorem and Assumptions 1 and 2. Simplifying,

Qu(c.n) = 1 E{1-5,} cE{S,(1-5,)} ®)
e E(1—S,) [eE{S,(1-5,)} @E{S2(1—-5,)}+ -SE{S,(1-5,)%}
1 | E{Sy) cE{S7}
Ql(C, Tl) - E(Sg) E]E{Sg} EQE{Sg} + nfl]E{Sg(l _ Sg)} ] (9)

We consider three special cases, corresponding to different choices for the saturations S,.
Suppose first that there is a single saturation s. Although this is a degenerate random satu-
ration experiment—there is only one saturation—it is still compatible with the conditions of
Theorem 2. Since P(S, = s) = 1 the expectation of any function h(S,) simply equals h(s).
Accordingly, (8) and (9) simplify to yield

1 cS

cs (es)? + —557(11__18)

cs(1—s)
n—1 "~

det[Qo(c, n)] = det[Q1(¢,n)] =

As long as the single saturation s is interior, 0 < s < 1, we see that both Qy(¢, n) and Q:(¢, n)
are invertible for all n and any ¢ # 0. At the same time, the two matrices are arbitrarily
close to being singular for any ¢ provided that n is sufficiently large. Now consider a so-

called “cluster randomized” experiment in which there are two saturations, 0 and 1, and

0Note that, by construction, Q equals Q. wherever the latter is well-defined.
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P(S, = 1) = p. Calculating the expectations in (8) and (9) under this distribution for S,

o fro e
Qo(c,n) = [O O], Qi(¢,n) = [E 62].

In this case neither Qg nor Q; is invertible for any values of n and ¢, so none of the inverses
from Lemma 3 exist in a cluster randomized experiment. Finally, consider a design with two
distinct, equally likely saturations: s, < sy, P(S, = s) = P(S, = sy) = 1/2. Taking the
limits of (8) and (9) as n — oo, we have

c

Jim det Q36 )] = | | (01— S}E {830 5)} ~ B{S,(1 - 8,1

Cc

2
. (= _ 3 312
Tim det [Qj(c, )] = {—E(Sg)} [E{S,}E{s3} - E{s3}’]
and, under the specified distribution for S, straightforward but tedious algebra gives

E{l -5} E {53(1 - Sg)} —E{S,(1 - Sg)}2 = i(l —s1)(1 = su)(su — s1)*

E(S)E{S) ~B{S}} = sssmlon — )
Therefore the limit of Q(¢,n) is invertible at any ¢ # 0 if and only if s;, # sy and both
saturations are less than one. Similarly, the limit of Q7(¢,n) is invertible at any ¢ # 0
whenever s;, # sy and neither saturation is zero.

These three examples demonstrate that there two distinct sources of experimental varia-
tion that determine the rank of Qg and Q;: variation in S, between groups, and variation in
the fraction of compliers offered treatment within the groups assigned to a given saturation.
Our first example, that of a single saturation, had no between variation: only within varia-
tion. And, as we have seen, all within variation vanishes in the limit as group size increases.
In our second example, the cluster randomized experiment, the situation was reversed. Be-
cause everyone in a given group is either offered (S, = 0) or unoffered (S, = 1), this design
generates no within variation. While a cluster randomized design does generate some be-
tween variation, it is too coarse to identify our effects of interest: under our assumptions
Dig equals zero when Sy = 0 and C’ig when S, = 1. Our third example eliminated all within
variation by taking group size to infinity. We showed that two interior saturations provide
sufficient between variation to identify all of the effects in Theorem 2 for any ¢ # 0 when

the potential outcome functions are assumed to be linear.
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3.1 A Kernel Estimator

If C;y were observed, it would be straightforward to estimate the causal parameters iden-
tified in Theorem 3, using kernel averages to approximate the conditional expectations in
Theorem 2 and the empirical distribution of (C;,, N,) scaled by the appropriate importance
weights to average these “localized” effects over the cross-section. Standard results for kernel
estimation could then be applied to establish consistency as the number of groups grows and
the bandwidth approaches zero at an appropriate rate. Unfortunately, C_’ig is unobserved and
must instead be estimated.!! Unfortunately, as G grows, so does the number of unknown
values C’ig that we must estimate, a classic incidental parameters problem.'” To address
this challenge, we consider an asymptotic sequence in which group sizes grow sufficiently
fast relative to the number of groups that C;, can be replaced by an estimated value while
still permitting consistent estimation of the causal effects of interest. In practical terms, our
estimator is appropriate for settings with a large number of relatively large groups, e.g. the
experiment of ( ).

While more demanding in its requirements on sample size, the large group setting brings
with it two simplifications. First, while our identification results from section 3 involve
conditioning on both the share of compliers C;, and group size N,, conditioning on N, is
superfluous in large groups. As explained above, conditioning is necessary because (Cj,, N,)

)

induce heterogeneity in the “first-stage,” i.e. the distribution of D;, depends on them. In-
spection of Lemma 1, however, reveals that Dig R SgC_*ig when Ny is large, so that only @ig
is a source of first-stage heterogeneity in the limit. Second, as group sizes approach infinity

the distinction between the individual-specific variables C’Z-g and Dig and their group-specific

counterparts
1 1 o
c, = — Ci, D,=— D;
g Ng ZZI g g Ng Zzl g

becomes irrelevant. In other words, including or excluding one additional person is negligible
in a large group. These observations motivate our use of a simple kernel estimator that uses
only group-level information and conditions only on an estimate of the share of compliers.

To simplify the discussion below we first introduce some additional notation. Let B(c,n)

" Under one-sided non-compliance, C’ig is in fact observed for individuals in a group with a saturation of
100%. Because everyone in such a group has Z;;, = 1, the compliers are precisely those individuals with
D;, = 1. At any other saturation, however, C_'ig cannot be observed. As argued in the preceding section,
at least two interior saturations (i.e. strictly between zero and one) are required to avoid problems of weak
identification so this problem cannot be averted by changing the experimental design.

12While @-g can vary across individuals in the same group, it can take on at most two different values for
fixed g. If a group contains T total individuals, of whom ¢ are compliers and n never-takers, then the share
of compliers among a given person’s neighbors is either (¢ — 1)/(T — 1) if she is a complier or ¢/(T — 1) if
she is a never-taker. Thus, the number of incidental parameters is 2G.
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be a generic localized parameter vector from one of the four parts of Theorem 2. Then
_ -1 _
B(c,n) = E[Ay|Ciyy=c,Ny=n]  E[Py|Ciy = ¢, N, = n]

where A;, and P, are placeholders for the matrices in Theorem 2. For example, part (iv)
of the theorem has

,B(C, n) = E[01g|ézg = C, Ng = n], Aig = (1 — Zl’g)j\(iigj\(il(g, Pig = (1 — ZZ ))?z }/;g'
Define 3(c) to be the analogous quantity conditioning only on C;, = ¢ but not N, = n.

We construct a kernel estimator of 3(c) that conditions on the estimated share of com-

pliers 69 within a given group, defined as

= 10
I 0, otherwise. (10)

é‘ _{ Dg/Zg if Zijg%O
In a group in which no one is offered treatment, there is no information upon which to base
an estimate of the share of compliers. For this reason we exclude zero-saturation groups,
Sy = 0, from our analysis. Under Assumption 7(i), doing so does not bias our estimates of
localized or average effects. To simplify the notation, we assume without loss of generality
that the experimental design contains only positive saturations throughout the remainder of
this section. Under Bernoulli offers (Assumption 2) it is possible, although unlikely, that Z-g
could be zero even if S; > 0. For convenience, our definition in (10) sets (79 = 0 in this case.

Let K(-) be a Lipschitz-continuous kernel function with bounded support. Further define
Kp(z) = h™'K(z/h) where h is a bandwidth. Our estimator is given by

-1

G Ny G Ny
B(C) = %ZZKh(ag _C)Aig] [%ZZKFL(C\Q — )Py,
g=1 i=1 g=1 i=1

where N = Engl N, is the total sample size of the experiment. Because the argument of
K, is constant within group, this expression can be re-written in terms of group aggregates

by defining
N, N,
_ 1 _ 1 N,
AE—%Ai, P _EPi7 ﬁz—g.
! Ng i=1 ! ! Ng i=1 ! ! 525:1 Ng

Note that {ﬁg}le is a set of weights that accounts for the different relative group sizes.
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Using this notation,

. _

1 R N B

a E PeKn(Cy — c)A,
g=1

G

1 R . _

G Z PeEn(Cy — )Py | . (11)
g=1

To estimate one the four “average” effects B from Theorem 3, we average over the observed

values of (79, scaling by the appropriate importance weight. Specifically,
G e ~
B=— Z ,B(C,) (12)

where the specific form of &, depends on which effect from Theorem 3 we have chosen
to estimate. Parts (i) and (ii), for example, concern effects for compliers. Accordingly, our
estimators for these effects gives additional weight to groups with more compliers. Similarly,
our estimator for part (ii) gives additional weight to groups with more never-takers. The

specific form of the importance weights is as follows

ng / [ i 1ngg] Complier Weights: (i) + (ii)
By = { Pyl — )/ [ Ze L Pe(1 — @)} Never-taker Weights: (iii) (13)
Py Full-sample Weights: (iv)

where (i)—(iv) refer to the corresponding parts of Theorem 3. Notice that, as it is concerns
an average effect for all individuals in the population, our estimator of the quantity from
part (iv) of Theorem 3 uses the “full-sample” weights p,, defined above.

Under regularity conditions, the difference between B and B converges in probability to
zero along an asymptotic sequence in which the bandwidth approaches zero at an appropriate

rate relative to the total number of groups and the minimum group size.

4 Conclusion

In this paper we have proposed methods to identify and estimate direct and indirect causal
effects under one-sided non-compliance, using data from a randomized saturation experiment.
A possible extension of the methods described above would be to consider settings with two-
sided non-compliance. In this case the localize-then-average approach would condition on the
share of always-takers in addition to the share of compliers. Another interesting extension

would be to consider relaxing Assumption 6 to allow some dependence of individuals’ take-up
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decisions on the offers of their peers. Work currently in progress explores this possibility.

A Proofs

The following lemma, taken from ( ) summarizes several useful properties
of conditional independence that we use in our proofs below. The names attached to properties (i)
and (iii)—(v) are taken from ( ). For the purposes of this document, we call the second

property “redundancy.”

Lemma A.1 (Axioms of Conditional Independence). Let X, Y, Z, W be random vectors defined on
a common probability space, and let h be a measurable function. Then:

(i) (Symmetry): X1Y|Z = Y I X|Z.

(7i) (Redundancy): X ILY|Y.

(iii) (Decomposition): X I Y|Z and W = h(Y) = X1 W|Z.

(iv) (Weak Union): X U Y|Z and W = h(Y) = XUY|(W, Z).
(v) (Contraction): X LY |Z and X WW|(Y,Z) = X (Y,W)|Z.

For simplicity, our proofs below freely use the “Symmetry” property without comment, although
we reference the other properties when used. We also rely on the following corollary of Lemma A.1.

Corollary A.1. X 1Y |Z implies (X, Z)1Y|Z.

Proof of Lemma 1. Applying Corollary A.1 and the Decomposition property to Assumption 7(ii)
yields Z, 1l (Cy, Cig)|(Ng, Sy). By the definition of conditional independence, it follows that the
distribution of Z,|(Ny, Sy, Cy, Cig) is the same as that of Z,|(Ny,S,):

P(Zy,=2z|Ng =n,S; =s, Cg,C_’Z-g) =P(Z,=2|Nyg=n,S; =s). (A.1)

Now, define the shorthand A = {Ng =n,S;=38C,=1c,Ciy= 6} and let C(i) be the indices of
all non-zero components of ¢, excluding the ith component, i.e. C(i) = {j #i: ¢; = 1}. By the

definition of D;g, the event { D;y = d} is equivalent to {Z#i CigZjqg = d(Ny — 1)} Consequently,

P(Dig =d|A, Zig) =P | | CigZjg| =d(n—1)|A, Zig | =P Y Zjg| =d(n—1)| A, Z
J#i Jec()

where the first equality uses the fact that A implies N, = n, and the second uses the fact that A
implies Cy = ¢, so we know precisely which of the indicators C}, equal zero and which equal one.

For part (i), suppose that Assumption 2 holds. Then (A.1) implies that Z4|A ~ iid Bernoulli(s).
By our definition of C(4) it follows that, conditional on A, the subvector of Z, that corresponds
to C(i) constitutes an iid sequence of ¢(n — 1) Bernoulli(s) random variables, each of which is
independent of Z;,. Hence, conditional on (A, Z;4), we see that Zjec Zjg ~ B1nom1a1( (n—1),s).

For part (ii), suppose that Assumption 3 holds. Our task is to calculate the probability that
ZjGC(i) Zjqg =d(n—1) given A and Z;; = z. By the definition of C(¢) this is simply the probability
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that exactly d(n—1) of the (n—1)¢ compliers (excluding person i) are offered treatment, conditional
on A and the treatment offer z made to person i. Under Assumption 3, (A.1) implies

P(Z, =z|A) = (L:S)l’ if 32z = [sn]

0, otherwise.

Hence, conditional on (A, Z;; = z), the allocation of treatment offers is equivalent to drawing
|ns| — z balls without replacement from an urn containing n— 1 balls in total. Of the balls (n—1)¢
are red, corresponding to the compliers, and (n — 1)(1 — ¢) are white, corresponding to the never-
takers. This follows from our definition of Cj4, which ezcludes person (i, g). Conditional on A and
Ziy = z, the sum EjeC(i) Zj4 is simply the number of red balls that we draw from the urn. If z = 0,
then person (i,g) was not offered treatment so we make |ns| draws from the urn; if z = 1, then
person (i,g) was offered treatment, so we make only |ns| — 1 draws from the urn. Hence, given
(A, Zig = z), the sum };c;) Zjq is a Hypergeometric(n—1, (n—1)¢, [ns] —z) random variable. [

Proof of Lemma 2. Define the shorthand R = {C,,B,4, Ny}. By the law of total covariance
Cov [Sg, (Vig — fy)Dig] =E {Cov [Sg, (Vig — ’y)Dig]R] } + Cov {]E [SgIR], E [(’yig - 7)D¢g|72]}
Cov(Sy, Dig) = E [Cov (Sy, Dig|R)] + Cov [E (S4|R) ,E (Diy|R)] -

And by Assumption 7 (i), E(Sg|R) = [E(S), a constant. Hence, the the covariance of any random
variable with [E(S;|R) is zero. This leaves,

Cov [Sy, (Yig — ) Dig| = E [(7ig — 7)Cov (Sg, Dig|R)] (A.2)
Cov(Sy, Dig) = E [Cov (Sy, Dig|R)] (A.3)

since « is constant and ;4 is /R-measurable. The law of total covariance also holds conditionally,
and as a special case of this result, Cov(X,Y|Z) = Cov [X,E(Y|Z, X)|Z]. ** Accordingly,

Cov(Sy, Dig]R) = Cov [Sg,E(Dig|R, Sg)] = Cov (Sg, SgC_’Z-g|R) = C_'igVar(Sg]R) = CigVar(Sg)

where the second equality uses E[Dig|72, Syl = SgC_’ig, as implied by Lemma 1 under Assumptions
1-2 and 6-7, the third equality uses the fact that Cj, is R-measurable, and the fourth follows from
Sy AL R (Assumption 7). The result follows by substituting Cov(S,, D;y|R) = CizVar(S,) into (A.2)
and (A.3), since Var(Sy) is a constant and Cov [(vig — ), Cig] = E [(vig — 7)Cig] since v = E(7ig).

O

Proof of Theorem 1. Assumption 7(i) implies (Cy, Bgy)1.S4| Ny by Weak Union and Decompo-
sition. Combining this with Assumption 7(ii) gives

(Zg, Sg)LL(By, Cy)| Ny (A.4)

by Contraction. Now let C_;, denote the subvector of C, that excludes element i. Applying
Decomposition, Corollary A.1, and Weak Union to (A.4),

(597Zg)—“—(BigaCing—ingg)’(Nméz‘g)- (A-5)

13The general form is Cov(X,Y|Z) = E [Cov(X,Y|Z,W)|Z] + Cov [E (X|Z, W) ,E(Y|Z,W)|Z].
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because Cj, is a function of (Cy, Ny). Since neither the distribution of X nor Y from Lemma 1
depends on c, B B
Dig I C—ig|(Ng, Cig, Sy, Zig)- (A.6)

Applying Decomposition to (A.5) gives C_;; 1l (Sy, Zig)|(Ng, Cig). Combining this with (A.6),
(Sg, Zig, Dig)Jl—C—ig’(Ng’ éig) (A7)
by Contraction. Now, applying Weak Union, Decomposition, and Corollary A.1 to (A.5),
(Sg; Zig, Dig)JJ—(Bigv Cig)|(C—ig, Ciga Ng). (A.8)
since D;, is a function of (Z,, C_;4, Ny). Finally, applying Contraction to (A.7) and (A.8),
(ng Zigv Dig)iL(C—ig’ Biga Cig) | (Cig7 Ng)
and the result follows by a final application of Decomposition. O

Proof of Theorem 2(i). Under IOR D;, = Cj;Z;,. Defining M;, = diag {1, Cjy} ® Ik,

X,y = ([(1) C?J [ ZlgD ® [Ixt(Dig)] = (B C?g] ®11K) ({Zl } ®f(Dig)> — M, W,

from which we obtain
Wingg = WigWQQMig (A.9)

along with
WigYig = Wig (X},Big) = Wiy Wi M;;Bj, (A.10)
using the fact that M, is a symmetric matrix. Substituting (A.9) gives
E (WX, |Cig, Ng| = B [WigW; |Cig, Ng| E [Mig|Cig, Ny (A.11)

by Theorem 1, since WigW;g is a measurable function of (Zig,Dig) and M;, is a measurable
function of Cj4. Similarly, substituting (A.10) and again applying Theorem 1,

E [WigYig‘cig’Ng] =E [Wigwgg@ig’ Ng] B [MigBig|éigv Ng] (A.12)

since M;;B;, is a measurable function of (B4, Cjs). Now, By iterated expectations,

~ E 02 CZ ’N
E[MigBig\cig,Ng]:[E( (81| Cig, Ny) ]

Cig {wig - 97?9} ’Cig7Ng)
= [ _ 1 (9i9|éingg) _ ]
E (Cig,cimNg) E ({’pig - 92’9} |Cig =1, Cig,Ng)
E (9i9|éigaN9>

= [M,4|Cig, Ny [E (Yiy — 0iglCig = 17Cingg)} '

The result follows by substituting this expression for E [M;yB;4|Cig, Ng| into (A.12) and combining
with (A.11). O
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Proof of Theorem 2(ii). By iterated expectations,
E[Digzigi;gyig@ig’ Ng] = E[Digzig|éiga Ng]E[ngYigwime =1, Cig,Ng} (A.13)
and similarly,
E[DyyZigXig X!, |Cig, Ny] = E[DigZig|Cig, Ny E[XigX}y| DigZig = 1, Cig, Nyl. (A.14)
Under IOR and one-sided non-compliance,
{DigZig =1}y ={Diy =1,Z;jg =1} = {Ciy = 1, Z;y = 1}. (A.15)

Hence,
E{XignﬂDigZig =1, Cig,Ng} = E[Xigxgg¢ig|cig =1,Zig =1, Cjy, Ng] (A.16)

by (A.15), using the fact that Yj, = )“i;g {(1 = Diy)8ig + Digtp;,}. Applying Weak Union and
Decomposition to Theorem 1, we obtain D;y Il B;y|(Cig, Cig, Ng), which in turn implies

‘)Zvigil—"vbig‘ (Ciga Ziga Ciga Ng) (Al?)

since )N(Z-g is a measurable function of Dig and 1,big is a measurable function of B;;. Proceeding
similarly, Big_l Zig|(Cig, Cig, Ng) which implies

$ig UL Zig|(Cig, Cig, Ny). (A.18)
Thus, applying (A.15), (A.17), and (A.18) to (A.16),
]E[ilg}/ZgLngZzg = 1, éig, Ng] = E[Xlgi;g|Dngzg = 17 CZQ7N9]E[¢1g‘CZg — 17 C_Yig7 Ng] (Alg)

The result follows by combining (A.13), (A.14), and (A.19). O

Proof of Theorem 2(iii). Because this proof is nearly identical to that of Theorem 2(ii), we
merely outline the differences here. First, in the iterated expectations step, we condition on the
event (1—D;y)Zig = 1. Second, we use {(1 — D;g)Zig =1} = {D;g =0, Zjg = 1} = {Cig =0, Z;g = 1}
to change the conditioning set when manipulating ]E[)N(igYig\(l — Dig)Zig, C’ig, Ng|. Third, we note
that Y, is equal to )2290@ given D;, = 0. Fourth, we apply Lemma A.1 to Theorem 1 to obtain
Xig1.0:4|(Cigs Zig, Cig, Ny) and ;4 1L Zig|(Cig, Cigs Ny).- O

Proof of Theorem 2(iv). By iterated expectations,
E [(1 — Zig) Xigyig@z‘av Ng] =k [1 - Zig|éiga Ng} E [Xigmg‘zig =0, éigv Ng}
[ {(1 — Zig) XigXig |C_'iga Ng] =k [1 — Zig ‘éig,Ng] B [XigXig |Zi9 =0, C_fing} :

Now, by Theorem 1 (Zig, Dig, Sq)1L(Big, Cig)|(Cig, Ny) which implies 0,411 D;y|(Zig, Cig, N;) by
weak union and decomposition. Since X, is a measurable function of Dig,

E [iigmg }Zzg =0, éig; Ng} =1 [izgﬁ/

ig |

Zig = 0,Cig, Ny | B [8iy | Zig = 0, Cig, N,

because Z;; = 0 implies Y;, = )N(ggHig under one-sided non-compliance. The result follows by
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combining the three displayed equations, using 0,1l Z;,|(Cig, Ny) as implied by Theorem 1 and
decomposition. ]

Lemma A.2. Let A and B be (m x m) matrices and define

_[A+B B
)

Then U is invertible if and only if A and B are both invertible, in which case U~' =V where

At e
V= [_Al Afl + B1:| :

Proof of Lemma A.2. The “if” direction follows by direct calculation: VU = UV = Ig,,. For
the “only if” direction, suppose that U is invertible. Partitioning U~! into blocks (C, D, E, F')
conformably with the partition of U, we have

UU_IZ[MB B] [c D}:[]Im o]:[c D} [A+B B

-1
B B| |E F 0 T, E F B B} =

We begin by showing that A is invertible. Consider the product UU~!. Multiplying the first
row of U by the first column of U~! gives the equation AC + B(C + E) = I,,; multiplying the
second row of U by the first column of U~! gives B(C + E) = 0. Combining these, AC' = T,,.
Now consider the product U~'U. Multiplying the first row of U~! by the first column of U
gives CA + (C + D)B = I,,; multiplying the first row of U~! by the second column of U gives
(C + D)B = 0. Combining these, CA = I,,,. Since AC = CA = 1,,,, we have shown that A is
invertible with A~! = C.

We next show that D = E = —C. Consider again the product UU~!. Multiplying the first
row of U by the second column of U1 gives AD + B(D + F) = 0; multiplying the second row of
U by the second column of U~! gives B(D + F) = I,,,. Combining these, AD = —1I,, and because
A~ = C we can solve this equation to yield D = —C. Now consider U~'U. Multiplying the second
row of U~! by the first column of U gives EA + (E + F)B = 0; multiplying the second row of U !
by the second column of U gives (FE + F)B = I,,. Combining these, FA = —1I,,, and solving for F,
we have E = —C since A~ = C.

Finally we show that B is invertible. Multiplying the second row of U by the second column
of U™! gives B(D + F) = T,,,, but since D = —C' this becomes B(F — C) = T,,, Multiplying the
second row of U1 by the first column of U gives (E+ F)B + FA = 0 but because £ = —C = A~!
this becomes (F' — C)B = I,;,. Thus, B(F — C) = (F — C)B = I,;, so we have shown that B is
invertible with B~! = FF — C. 0

Proof of Lemma 3. By the law of total probability,

J
P(Zig = 1|Cig, Ng) = E[E (Zig|Sy)] = Z s;IP(Sg = s5) = E(5) (A.20)
j=1

since Syl (Cy, By, Ny) by Assumption 7(i) and Z 4l (Cy, Big)|(Sy, Ny) by Assumption 7(ii).
Turning our attention to part (i), (A.11) implies that E[W;, X} [Cj4, N,] is invertible if and only

if E[W;y Wi |Cig, Ng| and E[M;4|Cjg, Ng| are both invertible, where we define M;, = diag{1, Cjy} ®

Ik as in the proof of Theorem 2(i). The matrix IE[M;4|Cjg, Ng], in turn, is invertible if and only if
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E[Ci4|Cig, Ng| # 0. It remains to examine E[WigW§g|C_’ig,Ng]. By (A.20), iterated expectations,
and the definition of W;, in Theorem 1, we have

EIW, Wi i ] = [ o] @ ol - Blsi) + |} )] @ QuElsy

_ [{1 —E(Sy)} Qo + E(Sg) Q1 E(Sg)Ql]
E(Sy)Q1 E(Sy)Q1

where it is understood that the left-hand side conditional expectation, and both Q¢ and Q are
evaluated at (¢,n). It follows by Lemma A.2 that E[W;;W,4|Cig, N,] is invertible if and only if
both [1 — E(S,)]Qo and E(S,)Q: are invertible, which holds precisely when E(S,) ¢ {0,1} and
both Qo and Q; are invertible. This establishes part (i) of the result.

For part (ii), recall that D;; = Cj;Z;4 under IOR. Since Z;, is binary, it follows that

E[DigZig)zing{g@iga Ng] = E[Cigzig)zig)?z{g@igv Ng] = E[Cig|éigv NQ]E[ZigXing{g@ig’ Ng]
using C’igil_Zig)N(igX{gKC_'ig, Ny), as implied by Theorem 1. Part (ii) follows since
E[Zigiig)?z(gmiga Ngl = QuE(Sy)

by iterated expectations. Part (iii) follows similarly, since

E[(1 - Dig)Zig)}ig)?z{g‘éimNg] - {1 - E[Cig‘éigv Ng]} Q1E(Sy).
Finally, by (A.20) and by iterated expectations, conditioning on Z;; = 0,

E1- Zig))zig)zig |C_'igv Ng] = Qo [1 - E(Sy)]

from which we obtain part (iv) of the result. O

Proof of Lemma 4. Let X\ be equal in distribution to a Bernoulli(| (n—1)&], s;) RV multiplied
by 1/(n — 1). Inspection of the mean and variance of XY establishes that X converges in
probability to s;c, because mean-square convergence implies convergence in probability. Hence, if
we let F) denote the CDF of X\, then limp_ya F,gj)(m) = 1{x > s;c} for all z # s;¢, because
convergence in probability to a constant implies convergence in distribution. Now let Y, be a
RV with CDF F,(y) = ijl jald )(y)%. By construction the random variable Y;, has the same
distribution as D;y|(Cig = |[(n — 1)¢]/(n — 1), Ny = n, Ziy = z) so that

Q:(¢,n) = B[f(Dig)f(Dig)'|Cig = [(n — 1)c| /(n — 1), Ng = n, Zig = z] = E[f(Y,)£(V,)'].
Using the convergence of Féj ), it follows that Y, converges in distribution to a random variable Y’
with cdf F(y) = Z}']=1 1{y > y;} ‘& where y; = s;¢. Accordingly, since Y, € [0,1] for all n and £

is bounded over the same interval, the bounded convergence theorem gives

lim E[f(D;y)f(Dig)|Cig = [(n—1)¢]/(n—1),Ny = n, Ziy = z] = lim E[f(Y,)f(Y,)'] = E[f(Y)f(Y)']

n—oo n—oo
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and because the determinant of a matrix is a continuous function of its elements,

lim det {E[f(Diy)f(Di,)'|Cig = |(n — 1)e]/(n — 1), Ny = n, Zig = 2]} = det {E[E(Y)E(Y)]}.

n—o0

From its CDF, we see that Y is discrete with support set {y1,¥2,...,%s}, and probability mass

function P(Y = y;) = m;/G. Hence, E[f(Y)f(Y)'] = ijl £ (y;)E(y;), which implies
' J

rank (E [f(Y)E(Y)]) <Y rank [%f(yj)f(yj)’} =3 rank [£(y)t(y;)'] = J
=1 i=1

since m;/G > 0 for all j. Because E[f(Y)f(Y)'] is a (K x K) matrix, its determinant is nonzero
precisely when its rank equals K. But we have shown that the rank of E[f(Y)f(Y)] cannot exceed
J. Therefore K > J implies det {E[f(Y)f(Y)']} = 0 and the result follows. O
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